首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Neural Network-Based Motion Control of an Underactuated Wheeled Inverted Pendulum Model
【24h】

Neural Network-Based Motion Control of an Underactuated Wheeled Inverted Pendulum Model

机译:欠驱动轮倒立摆模型的基于神经网络的运动控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, automatic motion control is investigated for one of wheeled inverted pendulum (WIP) models, which have been widely applied for modeling of a large range of two wheeled modern vehicles. First, the underactuated WIP model is decomposed into a fully actuated second order subsystem consisting of planar movement of vehicle forward and yaw angular motions, and a nonactuated first order subsystem of pendulum motion. Due to the unknown dynamics of subsystem and the universal approximation ability of neural network (NN), an adaptive NN scheme has been employed for motion control of subsystem . The model reference approach has been used whereas the reference model is optimized by the finite time linear quadratic regulation technique. The pendulum motion in the passive subsystem is indirectly controlled using the dynamic coupling with planar forward motion of subsystem , such that satisfactory tracking of a set pendulum tilt angle can be guaranteed. Rigours theoretic analysis has been established, and simulation studies have been performed to demonstrate the developed method.
机译:在本文中,研究了轮式倒立摆(WIP)模型之一的自动运动控制,该模型已广泛用于对两轮现代汽车的大范围建模。首先,欠驱动的WIP模型被分解为一个完全驱动的二阶子系统,该子系统由车辆向前和偏航角运动的平面运动组成,以及一个非驱动的摆运动一阶子系统。由于子系统的动力学未知和神经网络(NN)的通用逼近能力,已采用自适应NN方案对子系统进行运动控制。使用了模型参考方法,而参考模型通过有限时间线性二次调节技术进行了优化。被动子系统中的摆运动是通过与子系统平面向前运动的动态耦合间接控制的,从而可以确保对设定摆倾角的满意跟踪。建立了Rigors理论分析,并进行了仿真研究以证明所开发的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号