首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Multiset Canonical Correlations Using Globality Preserving Projections With Applications to Feature Extraction and Recognition
【24h】

Multiset Canonical Correlations Using Globality Preserving Projections With Applications to Feature Extraction and Recognition

机译:使用全局性保留投影的多集规范相关性及其在特征提取和识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Multiset features extracted from the same patterns always represent different characteristics of data. Thus, it is very valuable to perform the extraction on multiple feature sets. This paper addresses the issue of multiset correlation feature extraction (MCFE) in multiple feature representations. A novel method is proposed to carry out the MCFE for classification, called multiset canonical correlations using globality-preserving projections (MCC-GPs), which can perform joint dimensionality reduction for high-dimensional data. MCC-GP integrates correlational characteristics of feature pairs and global geometric information of data in the transformed low-dimensional space. This makes MCC-GPs have better discriminant ability than a previous method proposed by the authors, called multiset integrated canonical correlation analysis (MICCA), which only considers correlations for recognition tasks. Furthermore, MCC-GP can subsume two popular feature extraction methods into its framework under some constraints. This also provides a new insight for these two methods. The proposed method is applied to pattern recognition and examined using the COIL-100 and ETH-80 object databases and AR, CMU PIE, and Yale face databases. Extensive experimental results show that MCC-GP outperforms MICCA and multiset canonical correlation analysis in terms of classification accuracy and efficiency.
机译:从相同模式中提取的多集特征始终表示数据的不同特征。因此,对多个特征集执行提取非常有价值。本文解决了多个特征表示中的多集相关特征提取(MCFE)问题。提出了一种新的方法来进行分类的MCFE,即使用全局保留投影(MCC-GPs)进行的多集规范相关,该方法可以对高维数据进行联合降维。 MCC-GP集成了特征对的相关特性和变换后的低维空间中数据的全局几何信息。这使得MCC-GP具有比作者先前提出的称为多集集成规范相关分析(MICCA)的方法更好的判别能力,该方法仅考虑识别任务的相关性。此外,MCC-GP在某些约束下可以将两种流行的特征提取方法纳入其框架。这也为这两种方法提供了新的见解。所提出的方法应用于模式识别并使用COIL-100和ETH-80对象数据库以及AR,CMU PIE和Yale人脸数据库进行检查。大量的实验结果表明,MCC-GP在分类准确度和效率方面均优于MICCA和多集规范相关分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号