首页> 外文OA文献 >Face feature extraction and recognition based on discriminant subclass-center manifold preserving projection
【2h】

Face feature extraction and recognition based on discriminant subclass-center manifold preserving projection

机译:基于判别子类中心流形保留投影的人脸特征提取与识别

摘要

Manifold learning is an effective dimensional reduction technique for face feature extraction, which, generally speaking, tends to preserve the local neighborhood structures of given samples. However, neighbors of a sample often comprise more inter-class data than intra-class data, which is an undesirable effect for classification. In this paper, we address this problem by proposing a subclass-center based manifold preserving projection (SMPP) approach, which aims at preserving the local neighborhood structure of subclass-centers instead of given samples. We theoretically show from a probability perspective that, neighbors of a subclass-center would comprise of more intra-class data than inter-class data, and thus is more desirable for classification. In order to take full advantage of the class separability, we further propose the discriminant SMPP (DSMPP) approach, which incorporates the subclass discriminant analysis (SDA) technique to SMPP. In contrast to related discriminant manifold learning methods, DSMPP is formulated as a dual-objective optimization problem and we present analytical solution to it. Experimental results on the public AR, FERET and CAS-PEAL face databases demonstrate that the proposed approaches are more effective than related manifold learning and discriminant manifold learning methods in classification performance.
机译:流形学习是一种有效的降维技术,用于面部特征提取,通常来说,它倾向于保留给定样本的局部邻域结构。但是,样本的邻居通常包含比类内数据更多的类间数据,这对于分类是不利的影响。在本文中,我们通过提出基于子类中心的流形保留投影(SMPP)方法来解决此问题,该方法旨在保留子类中心的局部邻域结构,而不是给定样本。我们从概率角度理论上表明,子类中心的邻居将比类间数据包含更多的类内数据,因此更适合分类。为了充分利用类的可分离性,我们进一步提出了判别SMPP(DSMPP)方法,该方法将子类判别分析(SDA)技术结合到SMPP中。与相关的判别流形学习方法相反,DSMPP被公式化为双目标优化问题,并且我们为此提供了解析解决方案。在公共AR,FERET和CAS-PEAL面部数据库上的实验结果表明,所提出的方法在分类性能方面比相关的流形学习和判别流形学习方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号