首页> 美国卫生研究院文献>Springer Open Choice >Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis
【2h】

Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis

机译:基于多集典型相关分析的模拟驾驶fMRI数据分组研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, we apply a novel statistical method, multiset canonical correlation analysis (M-CCA), to study a group of functional magnetic resonance imaging (fMRI) datasets acquired during simulated driving task. The M-CCA method jointly decomposes fMRI datasets from different subjects/sessions into brain activation maps and their associated time courses, such that the correlation in each group of estimated activation maps across datasets is maximized. Therefore, the functional activations across all datasets are extracted in the order of consistency across different dataset. On the other hand, M-CCA preserves the uniqueness of the functional maps estimated from each dataset by avoiding concatenation of different datasets in the analysis. Hence, the cross-dataset variation of the functional activations can be used to test the hypothesis of functional-behavioral association. In this work, we study 120 simulated driving fMRI datasets and identify parietal-occipital regions and frontal lobe as the most consistently engaged areas across all the subjects and sessions during simulated driving. The functional-behavioral association study indicates that all the estimated brain activations are significantly correlated with the steering operation during the driving task. M-CCA thus provides a new approach to investigate the complex relationship between the brain functions and multiple behavioral variables, especially in naturalistic tasks as demonstrated by the simulated driving study.
机译:在这项工作中,我们应用一种新颖的统计方法,即多集规范相关分析(M-CCA),来研究在模拟驾驶任务期间获得的一组功能磁共振成像(fMRI)数据集。 M-CCA方法将来自不同受试者/会话的fMRI数据集联合分解为大脑激活图及其关联的时程,从而使跨数据集的每组估计激活图的相关性最大化。因此,所有数据集之间的功能激活均以不同数据集之间的一致性顺序提取。另一方面,M-CCA通过避免分析中不同数据集的连接,保留了从每个数据集估算的功能图的唯一性。因此,功能激活的跨数据集变化可用于测试功能行为关联的假设。在这项工作中,我们研究了120个模拟驾驶功能磁共振成像数据集,并将顶枕区域和额叶识别为模拟驾驶过程中所有受试者和会话中最一致的活动区域。功能-行为关联研究表明,在驾驶任务期间,所有估计的大脑激活都与转向操作显着相关。因此,M-CCA提供了一种新方法来研究大脑功能与多个行为变量之间的复杂关系,特别是在自然驾驶任务中,如模拟驾驶研究所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号