首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Adaptive Neural Control of Nonaffine Systems With Unknown Control Coefficient and Nonsmooth Actuator Nonlinearities
【24h】

Adaptive Neural Control of Nonaffine Systems With Unknown Control Coefficient and Nonsmooth Actuator Nonlinearities

机译:具有未知控制系数和非光滑执行器非线性的非仿射系统的自适应神经控制

获取原文
获取原文并翻译 | 示例

摘要

This brief considers the asymptotic tracking problem for a class of high-order nonaffine nonlinear dynamical systems with nonsmooth actuator nonlinearities. A novel transformation approach is proposed, which is able to systematically transfer the original nonaffine nonlinear system into an equivalent affine one. Then, to deal with the unknown dynamics and unknown control coefficient contained in the affine system, online approximator and Nussbaum gain techniques are utilized in the controller design. It is proven rigorously that asymptotic convergence of the tracking error and ultimate uniform boundedness of all the other signals can be guaranteed by the proposed control method. The control feasibility is further verified by numerical simulations.
机译:本文简要介绍了一类具有非光滑执行器非线性的高阶非仿射非线性动力学系统的渐近跟踪问题。提出了一种新颖的变换方法,该方法能够将原始的非仿射非线性系统系统地转换为等效的仿射系统。然后,为了处理仿射系统中包含的未知动力学和未知控制系数,在控制器设计中采用了在线逼近器和Nussbaum增益技术。严格证明,提出的控制方法可以保证跟踪误差的渐近收敛性和所有其他信号的最终均匀有界性。通过数值模拟进一步验证了该控制可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号