首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Discrete-Time Zhang Neural Network for Online Time-Varying Nonlinear Optimization With Application to Manipulator Motion Generation
【24h】

Discrete-Time Zhang Neural Network for Online Time-Varying Nonlinear Optimization With Application to Manipulator Motion Generation

机译:在线时变非线性优化的离散时间张神经网络及其在机械手运动产生中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this brief, a discrete-time Zhang neural network (DTZNN) model is first proposed, developed, and investigated for online time-varying nonlinear optimization (OTVNO). Then, Newton iteration is shown to be derived from the proposed DTZNN model. In addition, to eliminate the explicit matrix-inversion operation, the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is introduced, which can effectively approximate the inverse of Hessian matrix. A DTZNN-BFGS model is thus proposed and investigated for OTVNO, which is the combination of the DTZNN model and the quasi-Newton BFGS method. In addition, theoretical analyses show that, with step-size and/or with zero initial error, the maximal residual error of the DTZNN model has an pattern, whereas the maximal residual error of the Newton iteration has an pattern, with denoting the sampling gap. Besides, when and , the maximal steady-state residual error of the DTZNN model has an pattern. Finally, an illustrative numerical experiment and an application example to manipulator motion generation are provided and analyzed to substantiate the efficacy of the proposed DTZNN and DTZNN-BFGS models for OTVNO.
机译:在本文中,首先提出,开发和研究了离散时张神经网络(DTZNN)模型,用于在线时变非线性优化(OTVNO)。然后,牛顿迭代被证明是从提出的DTZNN模型中导出的。另外,为了消除显式矩阵求逆运算,引入了拟牛顿布赖登-弗莱彻-戈德法布-香诺(BFGS)方法,该方法可以有效地近似Hessian矩阵的逆。因此,提出并研究了针对OTVNO的DTZNN-BFGS模型,该模型是DTZNN模型与准牛顿BFGS方法的结合。此外,理论分析表明,在步长和/或初始误差为零的情况下,DTZNN模型的最大残留误差具有一个模式,而牛顿迭代的最大残留误差具有一个模式,其表示采样间隙。此外,当和时,DTZNN模型的最大稳态残余误差具有规律。最后,提供了一个示例性的数值实验和一个用于机械手运动产生的应用实例,并进行了分析,以证实所提出的DTZNN和DTZNN-BFGS模型对OTVNO的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号