首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Mutual-Collision-Avoidance Scheme Synthesized by Neural Networks for Dual Redundant Robot Manipulators Executing Cooperative Tasks
【24h】

Mutual-Collision-Avoidance Scheme Synthesized by Neural Networks for Dual Redundant Robot Manipulators Executing Cooperative Tasks

机译:通过执行协作任务的双冗余机器人机械手合成的互碰避免方案

获取原文
获取原文并翻译 | 示例

摘要

Collision between dual robot manipulators during working process will lead to task failure and even robot damage. To avoid mutual collision of dual robot manipulators while doing collaboration tasks, a novel recurrent neural network (RNN)-based mutual-collision-avoidance (MCA) scheme for solving the motion planning problem of dual manipulators is proposed and exploited. Because of the high accuracy and low computation complexity, the linear variational inequality-based primal-dual neural network is used to solve the proposed scheme. The proposed scheme is applied to the collaboration trajectory tracking and cup-stacking tasks, and shows its effectiveness for avoiding collision between the dual robot manipulators. Through network iteration and online learning, the dual robot manipulators will learn the ability of MCA. Moreover, a line-segment-based distance measure algorithm is proposed to calculate the minimum distance between the dual manipulators. If the computed minimum distance is less than the first safe-related distance threshold, a speed brake operation is executed and guarantees that the robot cannot exceed the second safe-related distance threshold. Furthermore, the proposed MCA strategy is formulated as a standard quadratic programming problem, which is further solved by an RNN. Computer simulations and a real dual robot experiment further verify the effectiveness, accuracy, and physical realizability of the RNN-based MCA scheme when manipulators cooperatively execute the end-effector tasks.
机译:在工作过程中双机器人操纵器之间的碰撞将导致任务故障甚至机器人损坏。为了避免双机器人操纵器的相互冲突,同时进行协作任务,提出了一种用于解决双控器运动规划问题的新的经常性神经网络(RNN)的基于相互冲击 - 避免(MCA)方案。由于高精度和低计算复杂性,基于线性变化不等式的原始神经网络用于解决所提出的方案。所提出的方案应用于协作轨迹跟踪和杯堆叠任务,并显示其避免双机器人操纵器之间的碰撞的有效性。通过网络迭代和在线学习,双重机器人操纵器将学习MCA的能力。此外,提出了一种基于线段的距离测量算法来计算双操纵器之间的最小距离。如果计算的最小距离小于第一安全相关距离阈值,则执行速度制动操作并保证机器人不能超过第二安全相关距离阈值。此外,所提出的MCA策略被制定为标准二次编程问题,该问题通过RNN进一步解决。计算机模拟和实际双重机器人实验进一步验证了当机械手协同执行终端执行器任务时基于RNN的MCA方案的有效性,准确性和物理可实现性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号