首页> 外文学位 >Real-time cooperative control of a dual-arm redundant manipulator system.
【24h】

Real-time cooperative control of a dual-arm redundant manipulator system.

机译:双臂冗余机械手系统的实时协作控制。

获取原文
获取原文并翻译 | 示例

摘要

The position, force, impedance control problem for single non-redundant and redundant robot manipulators has been addressed extensively in the last two decades. Robot manipulators have been widely used in industrial manufacturing, under-water exploration, hazardous environment operations and space application. While a single robot can handle many tasks today in place of human beings, more sophisticated tasks can only be performed safely and efficiently by multiple robots. Multiple robots performing tasks together in a cooperative manner can have a significant advantage over a single robot just as a human being using two arms has an advantage over one using a single arm and multiple humans have an advantage over a single human. This becomes obvious in tasks such as handling massive payloads or non-rigid payloads—tasks such as those required of space manipulators like the Special Purpose Dexterous Manipulator (SPDM) on the International Space Station. All these applications normally involve the robot system coming in contact with its environment. In such scenarios, the contact force has to be regulated in order to prevent physical damage to the robot and/or the environment. An impedance behavior has to be controlled between the robot and the environment. When multiple robots are involved in handling a common object, the internal forces which do not contribute to the motion of the object but can cause damage to the objects or the robots during manipulation must be regulated. Most conventional single-robot control approaches and recent master-slave cooperative multiple manipulator control schemes will not be able to perform safely or efficiently the tasks mentioned above.; In this thesis, an impedance control based cooperative dual-arm controller is developed. This allows the jointly held object to be controlled such that a desired impedance is exhibited between the robot and the environment. The internal (squeezing) loading of the object caused by both robots is regulated to have another impedance behavior between the internal force tracking error and the object tracking trajectory. By doing this, we can balance the object tracking accuracy and the internal force tracking accuracy depending on the calibration status of the robot. Also, we gain high robustness to the system's kinematic and dynamic uncertainties. The proposed controller also solves the “transition” problem that occurs during the transition from independent open-chain control to closed-chain dual-arm control. The control scheme also takes advantage of the redundancy in the robots to achieve singularity avoidance in closed-chain operation and collision avoidance in open-chain operation.; The dual-arm control scheme has been designed, simulated, and experimentally verified. The scheme has been implemented in the Robotics Laboratory of the Department of Electrical and Computer Engineering at University of Western Ontario using a real-time operating system and provides real-time performance. Extensive experiments involving a number of strawman tasks have been performed using two redundant manipulators to demonstrate the capability of the dual-arm system in open-chain and closed-chain operation, and the robustness of the system to kinematic and dynamic uncertainties.
机译:在过去的二十年中,已经广泛地解决了单个非冗余和冗余机器人操纵器的位置,力,阻抗控制问题。机器人操纵器已广泛用于工业制造,水下勘探,危险环境操作和空间应用。虽然如今一个机器人可以代替人类来处理许多任务,但只有多个机器人才能安全有效地执行更复杂的任务。以协作方式一起执行任务的多个机器人可以比单个机器人具有显着的优势,就像使用两个手臂的人比使用单个手臂的人具有优势,并且多个人比单个人的优势更重要。这在处理大量有效载荷或非刚性有效载荷等任务中变得很明显,这些任务是诸如国际空间站上的特种敏捷操纵器(SPDM)之类的空间操纵器所需的任务。所有这些应用程序通常都涉及机器人系统与其环境的联系。在这种情况下,必须调节接触力,以防止对机器人和/或环境造成物理损坏。必须在机器人与环境之间控制阻抗行为。当涉及多个机器人处理一个共同的物体时,必须调节不会影响物体运动但会在操作过程中损坏物体或机器人的内力。大多数传统的单机器人控制方法和最近的主从协作多机械手控制方案将无法安全或有效地执行上述任务。本文提出了一种基于阻抗控制的协同双臂控制器。这允许控制共同保持的物体,使得在机器人与环境之间呈现出期望的阻抗。由两个机器人引起的对象的内部(挤压)负载被调整为在内部力跟踪误差和对象跟踪轨迹之间具有另一种阻抗行为。通过这样做,我们可以根据机器人的校准状态平衡对象跟踪精度和内力跟踪精度。此外,我们还获得了系统运动学和动态不确定性的高度鲁棒性。所提出的控制器还解决了从独立的开链控制到闭链双臂控制的过渡过程中出现的“过渡”问题。控制方案还利用了机器人的冗余性,在闭链操作中避免了奇异性,在开链操作中避免了奇异性。双臂控制方案已经过设计,仿真和实验验证。该方案已使用实时操作系统在西安大略大学电气和计算机工程系的机器人实验室中实施,并提供实时性能。已经使用两个冗余操纵器进行了涉及多个草人任务的广泛实验,以证明双臂系统在开链和闭链操作中的功能,以及该系统对运动学和动态不确定性的鲁棒性。

著录项

  • 作者

    Xie, Haipeng.;

  • 作者单位

    The University of Western Ontario (Canada).;

  • 授予单位 The University of Western Ontario (Canada).;
  • 学科 Engineering Electronics and Electrical.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号