首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >A Novel Concept Drift Detection Method for Incremental Learning in Nonstationary Environments
【24h】

A Novel Concept Drift Detection Method for Incremental Learning in Nonstationary Environments

机译:非平稳环境中增量学习的新概念漂移检测方法

获取原文
获取原文并翻译 | 示例

摘要

We present a novel method for concept drift detection, based on: 1) the development and continuous updating of online sequential extreme learning machines (OS-ELMs) and 2) the quantification of how much the updated models are modified by the newly collected data. The proposed method is verified on two synthetic case studies regarding different types of concept drift and is applied to two public real-world data sets and a real problem of predicting energy production from a wind plant. The results show the superiority of the proposed method with respect to alternative state-of-the-art concept drift detection methods. Furthermore, updating the prediction model when the concept drift has been detected is shown to allow improving the overall accuracy of the energy prediction model and, at the same time, minimizing the number of model updatings.
机译:我们提出了一种用于概念漂移检测的新颖方法,该方法基于:1)在线顺序极限学习机(OS-ELM)的开发和持续更新,以及2)量化新收集的数据对更新后的模型进行了多少量化。该方法在两个关于不同类型概念漂移的综合案例研究中得到了验证,并被应用于两个公共现实世界数据集以及一个预测风电厂发电量的实际问题。结果表明,相对于替代的最新概念漂移检测方法,该方法具有优越性。此外,示出了当已经检测到概念漂移时更新预测模型,以允许提高能量预测模型的整体准确性,并且同时最小化模型更新的次数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号