首页> 外文期刊>Neural Networks, IEEE Transactions on >Incremental Learning of Concept Drift in Nonstationary Environments
【24h】

Incremental Learning of Concept Drift in Nonstationary Environments

机译:非平稳环境中概念漂移的增量学习

获取原文
获取原文并翻译 | 示例

摘要

We introduce an ensemble of classifiers-based approach for incremental learning of concept drift, characterized by nonstationary environments (NSEs), where the underlying data distributions change over time. The proposed algorithm, named ${rm Learn}^{++}.{rm NSE}$, learns from consecutive batches of data without making any assumptions on the nature or rate of drift; it can learn from such environments that experience constant or variable rate of drift, addition or deletion of concept classes, as well as cyclical drift. The algorithm learns incrementally, as other members of the ${rm Learn}^{++}$ family of algorithms, that is, without requiring access to previously seen data. ${rm Learn}^{++}.{rm NSE}$ trains one new classifier for each batch of data it receives, and combines these classifiers using a dynamically weighted majority voting. The novelty of the approach is in determining the voting weights, based on each classifier's time-adjusted accuracy on current and past environments. This approach allows the algorithm to recognize, and act accordingly, to the changes in underlying data distributions, as well as to a possible reoccurrence of an earlier distribution. We evaluate the algorithm on several synthetic datasets designed to simulate a variety of nonstationary environments, as well as a real-world weather prediction dataset. Comparisons with several other approaches are also included. Results indicate that ${rm Learn}^{++}.{rm NSE}$ can track the changing environments very closely, regardless of the type of concept drift. To allow future use, comparison and benchmarking by interested researchers, we also release our data used in this paper.
机译:我们引入了基于分类器的整体方法,用于概念漂移的增量学习,其特征在于非平稳环境(NSE),其中基础数据分布随时间变化。所提出的算法名为$ {rm Learn} ^ {++}。{rm NSE} $,可从连续的数据批次中学习,而无需对漂移的性质或速率进行任何假设;它可以从这样的环境中学习:经历恒定或可变的漂移率,概念类的添加或删除以及周期性漂移。与$ {rm Learn} ^ {++} $系列算法的其他成员一样,该算法将逐步学习,即无需访问以前看到的数据。 $ {rm Learn} ^ {++}。{rm NSE} $为接收到的每一批数据训练一个新的分类器,并使用动态加权多数投票将这些分类器组合在一起。该方法的新颖之处在于,基于每个分类器在当前和过去环境下的时间调整精度来确定投票权重。这种方法允许算法识别基础数据分布中的变化并采取相应的行动,以及可能重新出现较早的分布。我们在旨在模拟各种非平稳环境的几个合成数据集以及真实世界的天气预报数据集上评估该算法。还包括与其他几种方法的比较。结果表明$ {rm Learn} ^ {++}。{rm NSE} $可以非常紧密地跟踪变化的环境,而不管概念漂移的类型如何。为了允许感兴趣的研究人员将来使用,比较和进行基准测试,我们还发布了本文中使用的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号