首页> 外文期刊>Journal of statistical computation and simulation >An ensemble method for concept drift in nonstationary environment
【24h】

An ensemble method for concept drift in nonstationary environment

机译:非平稳环境中概念漂移的集成方法

获取原文
获取原文并翻译 | 示例

摘要

Most statistical and data-mining algorithms assume that data come from a stationary distribution. However, in many real-world classification tasks, data arrive over time and the target concept to be learned from the data stream may change accordingly. Many algorithms have been proposed for learning drifting concepts. To deal with the problem of learning when the distribution generating the data changes over time, dynamic weighted majority was proposed as an ensemble method for concept drift. Unfortunately, this technique considers neither the age of the classifiers in the ensemble nor their past correct classification. In this paper, we propose a method that takes into account expert's age as well as its contribution to the global algorithm's accuracy. We evaluate the effectiveness of our proposed method by using m classifiers and training a collection of n-fold partitioning of the data. Experimental results on a benchmark data set show that our method outperforms existing ones.
机译:大多数统计和数据挖掘算法都假设数据来自平稳分布。但是,在许多现实世界中的分类任务中,数据会随着时间的推移而到达,并且要从数据流中学习的目标概念可能会相应更改。已经提出了许多用于学习漂移概念的算法。为了解决生成数据的分布随时间变化时的学习问题,提出了动态加权多数作为概念漂移的集成方法。不幸的是,该技术既不考虑分类器的年龄,也不考虑其过去的正确分类。在本文中,我们提出一种考虑专家年龄及其对全局算法准确性的影响的方法。我们通过使用m个分类器并训练数据的n倍分区集合来评估我们提出的方法的有效性。在基准数据集上的实验结果表明,我们的方法优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号