首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Feature Extraction for Incomplete Data Via Low-Rank Tensor Decomposition With Feature Regularization
【24h】

Feature Extraction for Incomplete Data Via Low-Rank Tensor Decomposition With Feature Regularization

机译:通过具有特征正则化的低秩张量分解对不完整数据进行特征提取

获取原文
获取原文并翻译 | 示例

摘要

Multidimensional data (i.e., tensors) with missing entries are common in practice. Extracting features from incomplete tensors is an important yet challenging problem in many fields such as machine learning, pattern recognition, and computer vision. Although the missing entries can be recovered by tensor completion techniques, these completion methods focus only on missing data estimation instead of effective feature extraction. To the best of our knowledge, the problem of feature extraction from incomplete tensors has yet to he well explored in the literature. In this paper, we therefore tackle this problem within the unsupervised learning environment. Specifically, we incorporate low-rank tensor decomposition with feature variance maximization (TDVM) in a unified framework. Based on orthogonal Tucker and CP decompositions, we design two TDVM methods, TDVM-Tucker and TDVM-CP, to learn low-dimensional features viewing the core tensors of the Tucker model as features and viewing the weight vectors of the CP model as features. TDVM explores the relationship among data samples via maximizing feature variance and simultaneously estimates the missing entries via low-rank Tucker/CP approximation, leading to informative features extracted directly from observed entries. Furthermore, we generalize the proposed methods by formulating a general model that incorporates feature regularization into low-rank tensor approximation. In addition, we develop a joint optimization scheme to solve the proposed methods by integrating the alternating direction method of multipliers with the block coordinate descent method. Finally, we evaluate our methods on six real-world image and video data sets under a newly designed multiblock missing setting. The extracted features are evaluated in face recognition, object/action classification, and face/gait clustering. Experimental results demonstrate the superior performance of the proposed methods compared with the state-of-the-art approaches.
机译:实际上缺少条目的多维数据(即张量)是很常见的。在许多领域,例如机器学习,模式识别和计算机视觉中,从不完整张量中提取特征是一个重要但具有挑战性的问题。尽管可以通过张量完成技术来恢复丢失的条目,但是这些完成方法仅关注丢失的数据估计,而不是有效的特征提取。据我们所知,从不完全张量中提取特征的问题尚未在文献中得到很好的探讨。因此,在本文中,我们在无人监督的学习环境中解决了这个问题。具体来说,我们将低秩张量分解与特征方差最大化(TDVM)合并到一个统一的框架中。基于正交Tucker和CP分解,我们设计了TDVM-Tucker和TDVM-CP这两种TDVM方法,以将Tucker模型的核心张量作为特征并将CP模型的权向量作为特征来学习低维特征。 TDVM通过最大化特征方差来探索数据样本之间的关系,并通过低秩Tucker / CP近似同时估计丢失的条目,从而直接从观察到的条目中提取出信息丰富的特征。此外,我们通过制定将特征正则化纳入低秩张量逼近的通用模型来概括提出的方法。此外,我们开发了一种联合优化方案,通过将乘子的交替方向方法与块坐标下降法相结合来解决所提出的方法。最后,我们在新设计的多块缺失设置下,对六个真实世界的图像和视频数据集评估了我们的方法。在面部识别,对象/动作分类和面部/步态聚类中评估提取的特征。实验结果表明,与最新方法相比,该方法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号