首页> 外文期刊>Journal of visual communication & image representation >Graph regularized low-rank tensor representation for feature selection
【24h】

Graph regularized low-rank tensor representation for feature selection

机译:图正则化低秩张量表示法,用于特征选择

获取原文
获取原文并翻译 | 示例

摘要

Recently, considerable efforts have been made in feature selection to improve the original feature subspace. In this paper, we proposed a graph regularized low-rank tensor representation (GRLTR) for feature selection. We jointly incorporated the low-rank representation and the graph embedding into a unified learning framework to preserve the intrinsic global low-dimension structure and local geometrical structure of data together. According to the wide presence of multidimensional data, our proposed framework is based on tensor, which can faithfully maintain the information. To improve the performance of specific clustering task, we employed the idea of embedded-based feature selection into our model for optimizing the feature representation and clustering result simultaneously. Experimental results on six available datasets suggest our proposed approach produces superior performances compared with several state-of-the-art methods. (C) 2018 Published by Elsevier Inc.
机译:近来,在特征选择方面已经进行了相当大的努力以改善原始特征子空间。在本文中,我们提出了一种用于特征选择的图正则化低秩张量表示(GRLTR)。我们将低秩表示法和图形嵌入共同整合到一个统一的学习框架中,以将数据的固有全局低维结构和局部几何结构保留在一起。根据多维数据的广泛存在,我们提出的框架基于张量,可以忠实地维护信息。为了提高特定聚类任务的性能,我们在模型中采用了基于嵌入式特征选择的思想,以同时优化特征表示和聚类结果。在六个可用数据集上的实验结果表明,与几种最新方法相比,我们提出的方法具有更高的性能。 (C)2018由Elsevier Inc.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号