首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Feature Extraction for Incomplete Data Via Low-Rank Tensor Decomposition With Feature Regularization
【24h】

Feature Extraction for Incomplete Data Via Low-Rank Tensor Decomposition With Feature Regularization

机译:通过具有特征正则化的低级张量分解的不完全数据的特征提取

获取原文
获取原文并翻译 | 示例

摘要

Multidimensional data (i.e., tensors) with missing entries are common in practice. Extracting features from incomplete tensors is an important yet challenging problem in many fields such as machine learning, pattern recognition, and computer vision. Although the missing entries can be recovered by tensor completion techniques, these completion methods focus only on missing data estimation instead of effective feature extraction. To the best of our knowledge, the problem of feature extraction from incomplete tensors has yet to he well explored in the literature. In this paper, we therefore tackle this problem within the unsupervised learning environment. Specifically, we incorporate low-rank tensor decomposition with feature variance maximization (TDVM) in a unified framework. Based on orthogonal Tucker and CP decompositions, we design two TDVM methods, TDVM-Tucker and TDVM-CP, to learn low-dimensional features viewing the core tensors of the Tucker model as features and viewing the weight vectors of the CP model as features. TDVM explores the relationship among data samples via maximizing feature variance and simultaneously estimates the missing entries via low-rank Tucker/CP approximation, leading to informative features extracted directly from observed entries. Furthermore, we generalize the proposed methods by formulating a general model that incorporates feature regularization into low-rank tensor approximation. In addition, we develop a joint optimization scheme to solve the proposed methods by integrating the alternating direction method of multipliers with the block coordinate descent method. Finally, we evaluate our methods on six real-world image and video data sets under a newly designed multiblock missing setting. The extracted features are evaluated in face recognition, object/action classification, and face/gait clustering. Experimental results demonstrate the superior performance of the proposed methods compared with the state-of-the-art approaches.
机译:缺失条目的多维数据(即张量)在实践中是常见的。从不完全张量的提取特征是许多领域的重要而挑战性问题,如机器学习,模式识别和计算机视觉。虽然缺失的条目可以通过Tensor完成技术恢复,但是这些完成方法仅关注缺少的数据估计而不是有效的特征提取。据我们所知,从不完全张量的特征提取问题尚未在文献中探讨。在本文中,我们在无监督的学习环境中解决了这个问题。具体而言,我们将低级张量分解与统一框架中的特征方差最大化(TDVM)纳入了低级张量分解。基于正交的Tucker和CP分解,我们设计了两种TDVM方法,TDVM-Tucker和TDVM-CP,以学习将Tucker模型的核心张力视为特征的低维功能,并将CP模型的重量向量视为特征。 TDVM通过最大化特征方差探讨数据样本之间的关系,并同时通过低秩Tucker / CP近似估计丢失的条目,导致直接从观察到的条目提取的信息特征。此外,我们通过制定将特征正则化的一般模型概括了所提出的方法,该方法将特征正则化与低级张量近似。另外,我们通过将乘法器的交替方向方法与块坐标序列方法集成来解决所提出的方法来开发联合优化方案。最后,我们在新设计的多块缺失设置下对六个真实世界图像和视频数据集进行评估我们的方法。提取的特征在人脸识别,对象/动作分类和面部/步态群集中进行评估。实验结果表明,与最先进的方法相比,所提出的方法的卓越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号