首页> 外文期刊>Neural computation >On the Synthesis of Brain-State-in-a-Box Neural Models with Application to Associative Memory
【24h】

On the Synthesis of Brain-State-in-a-Box Neural Models with Application to Associative Memory

机译:框内脑状态神经模型的合成及其在联想记忆中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this article we present techniques for designing associative memories to be implemented by a class of synchronous discrete-time neural net- works based on a generalization of the brain-state-in-a-box neural model. First, we address the local qualitative properties and global qualitative Aspects of the class of neural networks considered. Our approach to the Stability analysis of the equilibrium points of the network gives insight Into the extent of the domain of attraction for the patterns to be stored as Asymptotically stable equilibrium points and is useful in the analysis of The retrieval performance of the network and also for design purposes.
机译:在本文中,我们介绍了一种基于一盒大脑状态神经模型的泛化设计由一类同步离散时间神经网络实现的联想记忆的技术。首先,我们讨论了所考虑的神经网络类别的局部定性属性和全局定性方面。我们对网络平衡点的稳定性分析的方法可以洞悉要存储为渐近稳定平衡点的模式的吸引域的范围,并有助于分析网络的检索性能以及设计目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号