首页> 外文会议>International Joint Conference on Neural Networks;IJCNN 2009 >Analysis and synthesis of associative memories based on Brain-State-in-a-Box neural networks
【24h】

Analysis and synthesis of associative memories based on Brain-State-in-a-Box neural networks

机译:基于盒内状态神经网络的联想记忆分析与综合

获取原文

摘要

In this paper, a design procedure is presented for synthesizing associative memories based on the brain-state-in-a-box neural network model. The theoretical analysis herein guarantees that the desired memory patterns are stored as asymptotically stable equilibrium points with very few spurious states. In order to avoid extensive computation, learning and forgetting are utilized by adding patterns to be stored as asymptotically stable equilibrium points to an existing set of stored patterns and deleting specified patterns from a given set of stored patterns without affecting the rest in a given network. Furthermore, the number of the memorized patterns in a designed brain-state-in-a-box neural network model can be made much more than that of neurons. Simulation results demonstrate the validity and characteristics of the proposed approach.
机译:本文提出了一种基于盒中脑状态神经网络模型的联想记忆合成方法。本文的理论分析保证了所需的存储模式存储为渐近稳定的平衡点,且杂散状态极少。为了避免大量的计算,通过将要存储为渐近稳定的平衡点的模式添加到现有的一组存储模式中并从给定的存储模式中删除指定的模式而不影响给定网络中的其余模式,来利用学习和遗忘。此外,在设计的盒内状态神经网络模型中,记忆模式的数量可以比神经元更多。仿真结果证明了该方法的有效性和特点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号