首页> 外文期刊>Neural computation >Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system
【24h】

Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system

机译:适应感觉运动系统噪声特性的随机最优控制和估计方法

获取原文
获取原文并翻译 | 示例

摘要

Optimality principles of biological movement are conceptually appealing and straightforward to formulate. Testing them empirically, however, requires the solution to stochastic optimal control and estimation problems for reasonably realistic models of the motor task and the sensorimotor periphery. Recent studies have highlighted the importance of incorporating biologically plausible noise into such models. Here we extend the linear-quadratic-gaussian framework-currently the only framework where such problems can be solved efficiently-to include control-dependent, state-dependent, and internal noise. Under this extended noise model, we derive a coordinate-descent algorithm guaranteed to converge to a feedback control law and a nonaclaptive linear estimator optimal with respect to each other. Numerical simulations indicate that convergence is exponential, local minima do not exist, and the restriction to nonadaptive linear estimators has negligible effects in the control problems of interest. The application of the algorithm is illustrated in the context of reaching movements. A Matlab implementation is available at www.cogsci.ucsd.edu/similar to todorov.
机译:生物运动的最佳原理在概念上很有吸引力,而且易于表述。然而,对它们进行经验测试,需要解决随机最优控制和估计问题的方法,这些问题是针对电动机任务和感觉电动机外围的合理现实模型的。最近的研究强调了将生物学上合理的噪声纳入此类模型的重要性。在这里,我们扩展了线性二次高斯框架,这是目前可以有效解决此类问题的唯一框架,其中包括与控制有关,与状态有关以及内部噪声。在这种扩展的噪声模型下,我们推导出了一种协调下降算法,可保证收敛到反馈控制律和相对最优的非自适应线性估计器。数值模拟表明收敛是指数的,不存在局部极小值,并且对非自适应线性估计量的限制对所关注的控制问题的影响可忽略不计。在达到运动的情况下说明了该算法的应用。可在www.cogsci.ucsd.edu/like todorov上获得Matlab实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号