首页> 外文期刊>Neural computation >Characterizing Responses of Translation-Invariant Neurons to Natural Stimuli: Maximally Informative Invariant Dimensions
【24h】

Characterizing Responses of Translation-Invariant Neurons to Natural Stimuli: Maximally Informative Invariant Dimensions

机译:表征翻译不变的神经元对自然刺激的反应:最大信息不变尺寸。

获取原文
获取原文并翻译 | 示例

摘要

The human visual system is capable of recognizing complex objects even when their appearances change drastically under various viewing conditions. Especially in the higher cortical areas, the sensory neurons reflect such functional capacity in their selectivity for complex visual features and invariance to certain object transformations, such as image translation. Due to the strong nonlinearities necessary to achieve both the selectivity and invariance, characterizing and predicting the response patterns of these neurons represents a formidable computational challenge. A related problem is that such neurons are poorly driven by randomized inputs, such as white noise, and respond strongly only to stimuli with complex high-order correlations, such as natural stimuli. Here we describe a novel two-step optimization technique that can characterize both the shape selectivity and the range and coarseness of position invariance from neural responses to natural stimuli. One step in the optimization is finding the template as the maximally informative dimension given the estimated spatial location where the response could have been triggered within each image. The estimates of the locations that triggered the response are updated in the next step.
机译:即使在各种观察条件下它们的外观发生巨大变化,人类视觉系统也能够识别复杂的对象。尤其是在较高的皮层区域,感觉神经元在针对复杂的视觉特征和对某些对象变换(例如图像平移)的不变性的选择性中反映了这种功能能力。由于要实现选择性和不变性都需要强大的非线性,因此表征和预测这些神经元的响应模式是一项艰巨的计算挑战。一个相关的问题是,此类神经元受随机输入(例如白噪声)的驱动不良,并且仅对具有复杂高阶相关性的刺激(例如自然刺激)产生强烈反应。在这里,我们描述了一种新颖的两步优化技术,该技术既可以表征形状选择性,又可以表征神经对自然刺激的位置不变性的范围和粗糙度。优化的一个步骤是,在给定估计空间位置的情况下,找到模板作为最大信息量,在每个图像中可能已触发响应。下一步会更新触发响应的位置的估计值。

著录项

  • 来源
    《Neural computation》 |2012年第9期|p.2384-2421|共38页
  • 作者单位

    Computational Neurobiology Laboratory and Crick-Jacobs Center for Theoretical and Computational Biology, Salk Institute for Biological Studies, La Jolla,CA 92037, U.S.A., and Center for Theoretical Biological Physics,University of California, San Diego, La Jolla, CA 92093, U.S.A.;

    Computational Neurobiology Laboratory and Crick-Jacobs Center for Theoretical and Computational Biology, Salk Institute for Biological Studies, La Jolla,CA 92037, U.S.A., and Center for Theoretical Biological Physics,University of California, San Diego, La Jolla, CA 92093, U.S.A.;

    Computational Neurobiology Laboratory and Crick-Jacobs Center for Theoretical and Computational Biology, Salk Institute for Biological Studies, La Jolla,CA 92037, U.S.A., and Center for Theoretical Biological Physics,University of California, San Diego, La Jolla, CA 92093, U.S.A.;

    Computational Neurobiology Laboratory and Crick-Jacobs Center for Theoretical and Computational Biology, Salk Institute for Biological Studies, La Jolla,CA 92037, U.S.A., and Center for Theoretical Biological Physics,University of California, San Diego, La Jolla, CA 92093, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号