首页> 外文期刊>Neural computation >A Unified Theory of Neuro-MRI Data Shows Scale-Free Nature of Connectivity Modes
【24h】

A Unified Theory of Neuro-MRI Data Shows Scale-Free Nature of Connectivity Modes

机译:神经MRI数据的统一理论显示连接模式的无标度性质

获取原文
获取原文并翻译 | 示例

摘要

A primary goal of many neuroimaging studies that use magnetic resonance imaging (MRI) is to deduce the structure-function relationships in the human brain using data from the three major neuro-MRI modalities: high-resolution anatomical, diffusion tensor imaging, andfunctional MRI.To date, the general procedure for analyzing these data is to combine the results derived independently from each of these modalities. In this article, we develop a new theoretical and computational approach for combining these different MRI modalities into a powerful and versatile framework that combines our recently developed methods for morphological shape analysis and segmentation, simultaneous local diffusion estimation and global tractography, and nonlinear and nongaussian spatial-temporal activation pattern classification and ranking, as well as our fast and accurate approach for nonlinear registration between modalities. This joint analysis method is capable of extracting new levels of information that is not achievable from any of those single modalities alone. A theoretical probabilistic framework based on a reformulation of prior information and available interdependencies between modalities through a joint coupling matrix and an efficient computational implementation allows construction of quantitative functional, structural, and effective brain connectivity modes and parcellation. This new method provides an overall increase of resolution, accuracy, level of detail, and information content and has the potential to be instrumental in the clinical adaptation of neuro-MRI modalities, which, when jointly analyzed, provide a more comprehensive view of a subject’s structure-function relations, while the current standard, wherein single- modality methods are analyzed separately, leaves a critical gap in an integrated view of a subject’s neuorphysiological state. As one example of this increased sensitivity,we demonstrate that the jointly estimated structural and functional dependencies of mode power follow the same power law decay with the same exponent.
机译:使用磁共振成像(MRI)的许多神经影像学研究的主要目标是,使用来自三种主要神经MRI模式的数据来推断人脑中的结构与功能的关系:高分辨率解剖,扩散张量成像和功能性MRI。迄今为止,用于分析这些数据的一般程序是将独立于这些方法中的每一种方法得出的结果进行组合。在本文中,我们开发了一种新的理论和计算方法,用于将这些不同的MRI模态组合到一个强大而通用的框架中,该框架将我们最近开发的用于形态学形状分析和分割,同时局部扩散估计和整体射线照相以及非线性和非高斯空间的方法相结合时间激活模式的分类和排名,以及我们快速而准确的方法之间的非线性配准方法。这种联合分析方法能够提取新的信息水平,而这些信息是单独从任何单个方法中无法获得的。一个理论上的概率框架基于重新设计的先验信息以及通过联合耦合矩阵进行的模态之间的可用相互依存关系以及有效的计算实现,可以构建定量的功能,结构和有效的大脑连通性模式以及细胞分裂。这种新方法可整体提高分辨率,准确性,细节水平和信息内容,并有可能在神经磁共振成像模式的临床适应中发挥作用,当共同分析时,该方法可提供受试者的更全面视图结构-功能关系,尽管目前的标准(其中单独分析单模态方法被单独分析)在受试者神经生理状态的综合视图中留下了关键的空白。作为这种灵敏度增加的一个例子,我们证明了联合估算的模式功率的结构和功能依赖性遵循相同的幂律衰减和相同的指数。

著录项

  • 来源
    《Neural computation》 |2017年第6期|1441-1467|共27页
  • 作者单位

    Center for Scientific Computation in Imaging, University of California at San Diego,La Jolla, CA 92093-0854, U.S.A., and Electrical and Computer Engineering Department, University of California at San Diego, La Jolla, CA 92093-0407, U.S.A.;

    Center for Scientific Computation in Imaging, University of California at San Diego,La Jolla, CA 92093-0854, U.S.A.,Department of Radiology, University of California at San Diego, La Jolla, CA 92093-0854, U.S.A.,and VA San Diego Healthcare System, San Diego, CA 92161, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号