首页> 外文期刊>Neural computation >Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains
【24h】

Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains

机译:从种群秒杀列车中恢复单次动力学的变分潜在高斯过程

获取原文
获取原文并翻译 | 示例

摘要

When governed by underlying low-dimensional dynamics, the interdependence of simultaneously recorded populations of neurons can be explained by a small number of shared factors, or a low-dimensional trajectory. Recovering these latent trajectories, particularly from single-trial population recordings, may help us understand the dynamics that drive neural computation. However, due to the biophysical constraints and noise in the spike trains, inferring trajectories from data is a challenging statistical problem in general. Here, we propose a practical and efficient inference method, the variational latent gaussian process (vLGP). The vLGP combines a generative model with a history-dependent point process observation, together with a smoothness prior on the latent trajectories. The vLGP improves on earlier methods for recovering latent trajectories, which assume either observation models inappropriate for point processes or linear dynamics. We compare and validate vLGP on both simulated data sets and population recordings from the primary visual cortex. In the V1 data set, we find that vLGP achieves substantially higher performance than previous methods for predicting omitted spike trains, as well as capturing both the toroidal topology of visual stimuli space and the noise correlation. These results show that vLGP is a robust method with the potential to reveal hidden neural dynamics from large-scale neural recordings.
机译:当由基本的低维动力学控制时,同时记录的神经元群体的相互依赖性可以通过少量共享因子或低维轨迹来解释。恢复这些潜在轨迹,特别是从单次试验人口记录中恢复,可能有助于我们理解驱动神经计算的动力学。但是,由于尖峰序列中的生物物理限制和噪声,从数据推断轨迹通常是一个具有挑战性的统计问题。在这里,我们提出了一种实用而有效的推理方法,即变分高斯潜在高斯过程(vLGP)。 vLGP将生成模型与历史相关的点过程观察相结合,并且在潜在轨迹上具有先验的平滑度。 vLGP改进了用于恢复潜在轨迹的早期方法,该方法假定观测模型不适用于点过程或线性动力学。我们比较和验证vLGP在模拟数据集和主要视觉皮层的种群记录上。在V1数据集中,我们发现vLGP的性能大大高于以前的方法,用于预测省略的尖峰序列,以及捕获视觉刺激空间的环形拓扑和噪声相关性。这些结果表明,vLGP是一种可靠的方法,具有从大规模神经记录中揭示隐藏的神经动力学的潜力。

著录项

  • 来源
    《Neural computation》 |2017年第5期|1293-1316|共24页
  • 作者

    Yuan Zhao; Il Memming Park;

  • 作者单位

    Department of Neurobiology and Behavior and Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, U.S.A. yuan.zhao@stonybrook.edu;

    Department of Neurobiology and Behavior, Department of Applied Mathematics and Statistics, and Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, NY, 11794, U.S.A. memming.park@stonybrook.edu;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号