首页> 外文期刊>Neural computation >Spike Train Statistics and Dynamics with Synaptic Input from any Renewal Process: A Population Density Approach
【24h】

Spike Train Statistics and Dynamics with Synaptic Input from any Renewal Process: A Population Density Approach

机译:任何更新过程中带有突触输入的突击列车统计和动力学:人口密度方法

获取原文
获取原文并翻译 | 示例

摘要

In the probability density function (PDF) approach to neural network modeling, a common simplifying assumption is that the arrival times of elementary postsynaptic events are governed by a Poisson process. This assumption ignores temporal correlations in the input that sometimes have important physiological consequences. We extend PDF methods to models with synaptic event times governed by any modulated renewal process. We focus on the integrate-and-fire neuron with instantaneous synaptic kinetics and a random elementary excitatory postsynaptic potential (EPSP), A. Between presynaptic events, the membrane voltage, v, decays exponentially toward rest, while s, the time since the last synaptic input event, evolves with unit velocity. When a synaptic event arrives, v jumps by A, and s is reset to zero. If v crosses the threshold voltage, an action potential occurs, and v is reset to vreset. The probability per unit time of a synaptic event at time t, given the elapsed time s since the last event, h(s, t), depends on specifics of the renewal process. We study how regularity of the train of synaptic input events affects output spike rate, PDF and coefficient of variation (CV) of the interspike interval, and the autocorrelation function of the output spike train. In the limit of a deterministic, clocklike train of input events, the PDF of the interspike interval converges to a sum of delta functions, with coefficients determined by the PDF for A. The limiting autocorrelation function of the output spike train is a sum of delta functions whose coefficients fall under a damped oscillatory envelope. When the EPSP CV, σA/μA, is equal to 0.45, a CV for the intersyn- ptic event interval, σT/μT = 0.35, is functionally equivalent to a deterministic periodic train of synaptic input events (CV = 0) with respect to spike statistics. We discuss the relevance to neural network simulations.
机译:在用于神经网络建模的概率密度函数(PDF)方法中,一个常见的简化假设是,基本突触后事件的到达时间由泊松过程控制。该假设忽略了有时会产生重要生理后果的输入中的时间相关性。我们将PDF方法扩展到具有受任何调制更新过程控制的突触事件时间的模型。我们关注具有瞬时突触动力学和随机基本兴奋性突触后电位(EPSP)A的整合放电神经元。在突触前事件之间,膜电压v向着静止呈指数衰减,而s为自上一次以来的时间突触输入事件,以单位速度发展。当突触事件到达时,v跳A,并且s重置为零。如果v超过阈值电压,则发生动作电位,并且v重置为vreset。给定自上次事件h(s,t)起经过的时间s,在时间t处突触事件的单位时间概率取决于更新过程的细节。我们研究突触输入事件序列的规则性如何影响输出尖峰间隔的输出尖峰速率,PDF和变异系数(CV),以及输出尖峰序列的自相关函数。在输入事件的确定性,类似于时钟的序列的极限中,尖峰间隔的PDF收敛到增量函数的总和,系数由PDF为A确定。输出尖峰序列的极限自相关函数是增量的总和。系数在阻尼振荡包络线以下的函数。当EPSP CVσA/μA等于0.45时,突触间事件间隔的CVσT/μT= 0.35,在功能上等效于相对于突触输入事件的确定性周期性训练(CV = 0)峰值统计。我们讨论了与神经网络仿真的相关性。

著录项

  • 来源
    《Neural computation》 |2009年第2期|360-396|共37页
  • 作者

    Ly C; Tranchina D;

  • 作者单位

    Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A. email chengly@pitt.edu;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号