首页> 外文期刊>PLoS Computational Biology >Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains
【24h】

Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains

机译:使用矩阵和张量分解对人口峰值列车进行单次分析

获取原文
       

摘要

Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatialdimension (differences in stimulus tuning across neurons at different locations), in theirtemporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose adataset of single-trial population spike trains into spatial firing patterns (combinations ofneurons firing together), temporal firing patterns (temporal activation of these groups ofneurons) and trial-dependent activation coefficients (strength of recruitment of such neuralpatterns on each trial). We validated various factorization methods on simulated data andon populations of ganglion cells simultaneously recorded in the salamander retina. Wefound that single-trial tensor space-by-time decompositions provided low-dimensionaldata-robust representations of spike trains that capture efficiently both their spatial andtemporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negativetensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population inresponse to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details ofnatural images. This information could not be recovered from the spike counts of thesecells. First-spike latencies carried the majority of information provided by the whole spiketrain about fine-scale image features, and supplied almost as much information aboutcoarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding.
机译:神经元记录技术的进步导致越来越多的同时监测神经元。这就提出了一个重要的分析挑战,即如何紧凑地捕获神经人口代码在其空间维度(不同位置的神经元的刺激调整差异),其时间维度(时间神经反应变化)或它们的组合(暂时)中携带的所有感官信息。协调的神经人口解雇)。在这里,我们研究了沿空间和时间分布的人口峰值列车的张量分解的效用。这些分解将单试验种群突波训练的数据集分解为空间发射模式(神经元发射的组合),时间发射模式(这些神经元组的时间激活)和依赖于试验的激活系数(每次试验中此类神经模式的募集强度)。 。我们对simulated视网膜中同时记录的模拟数据和神经节细胞群体验证了各种分解方法。我们发现,单试验张量时空分解提供了穗状序列的低维数据鲁棒表示,可有效捕获有关感觉刺激的时空信息。具有正交性约束的张量分解在提取感官信息方面最有效,而非负张量分解甚至在非独立和重叠的尖峰模式下也能很好地工作,并且可以检索由相同种群表示的新型信息激发模式。我们的方法表明,视网膜神经节细胞群体在其峰值时间以十毫秒为单位携带有关自然图像空间细节的信息。无法从这些单元的尖峰计数恢复此信息。第一次尖峰等待时间携带了整个尖峰序列提供的有关精细图像特征的大部分信息,并且提供了与粗糙自然图像特征几乎一样多的发射速率信息。总之,这些结果凸显了视网膜编码中尖峰定时的重要性,尤其是初尖峰延迟的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号