首页> 美国卫生研究院文献>PLoS Computational Biology >Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains
【2h】

Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains

机译:使用矩阵和张量分解对人口峰值列车进行单次试验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding.
机译:神经元记录技术的进步导致越来越多的同时监测的神经元。这就提出了一个重要的分析挑战,即如何紧凑地捕获神经种群代码在其空间维度(不同位置的神经元的刺激调整差异),其时间维度(时间神经反应变化)或其组合中携带的所有感官信息。 (临时协调的神经人口解雇)。在这里,我们研究了沿时间和空间分布的人口峰值列车的张量分解的效用。这些分解将单次试验种群峰值训练的数据集分解为空间激发模式(神经元激发的组合),时间激发模式(这些神经元组的时间激活)和依赖于试验的激活系数(这种神经模式的募集强度)在每个审判中)。我们根据模拟数据和simultaneously视网膜中同时记录的神经节细胞群体验证了多种分解方法。我们发现单试验张量时空分解提供了峰值序列的低维数据鲁棒表示,可有效捕获其有关感觉刺激的时空信息。具有正交性约束的张量分解在提取感官信息方面最有效,而非负张量分解甚至在非独立和重叠的尖峰模式下也能很好地工作,并且可以响应相同的种群来响应新的刺激而获取信息丰富的触发模式。我们的方法表明,视网膜神经节细胞群体在其峰值时间以十毫秒为单位携带有关自然图像空间细节的信息。无法从这些单元格的峰值计数中恢复此信息。第一次尖峰延迟包含了整个尖峰序列所提供的有关精细图像特征的大部分信息,并且所提供的关于粗糙自然图像特征的信息几乎与发射速率一样多。总之,这些结果凸显了视网膜编码中尖峰定时的重要性,尤其是初尖峰延迟的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号