首页> 外文期刊>Neural computation >A Locally Optimal Algorithm for Estimating a Generating Partition from an Observed Time Series and Its Application to Anomaly Detection
【24h】

A Locally Optimal Algorithm for Estimating a Generating Partition from an Observed Time Series and Its Application to Anomaly Detection

机译:基于观测时间序列的生成分区估计的局部最优算法及其在异常检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

Estimation of a generating partition is critical for symbolization of measurements from discrete-time dynamical systems, where a sequence of symbols from a (finite-cardinality) alphabet may uniquely specify the underlying time series. Such symbolization is useful for computing measures (e.g., Kolmogorov-Sinai entropy) to identify or characterize the (possibly unknown) dynamical system. It is also useful for time series classification and anomaly detection. The seminal work of Hirata, Judd, and Kilminster ( 2004 ) derives a novel objective function, akin to a clustering objective, that measures the discrepancy between a set of reconstruction values and the points from the time series. They cast estimation of a generating partition via the minimization of their objective function. Unfortunately, their proposed algorithm is nonconvergent, with no guarantee of finding even locally optimal solutions with respect to their objective. The difficulty is a heuristic nearest neighbor symbol assignment step. Alternatively, we develop a novel, locally optimal algorithm for their objective. We apply iterative nearest-neighbor symbol assignments with guaranteed discrepancy descent, by which joint, locally optimal symbolization of the entire time series is achieved. While most previous approaches frame generating partition estimation as a state-space partitioning problem, we recognize that minimizing the Hirata et al. ( 2004 ) objective function does not induce an explicit partitioning of the state space, but rather the space consisting of the entire time series (effectively, clustering in a (countably) infinite-dimensional space). Our approach also amounts to a novel type of sliding block lossy source coding. Improvement, with respect to several measures, is demonstrated over popular methods for symbolizing chaotic maps. We also apply our approach to time-series anomaly detection, considering both chaotic maps and failure application in a polycrystalline alloy material.
机译:生成分区的估计对于离散时间动态系统的测量符号化至关重要,在离散时间动态系统中,来自(有限基数)字母的一系列符号可以唯一地指定基础时间序列。这种符号化对于计算量度(例如,Kolmogorov-Sinai熵)是有用的,以识别或表征(可能未知的)动力学系统。这对于时间序列分类和异常检测也很有用。 Hirata,Judd和Kilminster(2004)的开创性工作得出了一个类似于聚类目标的新颖目标函数,该函数测量了一组重建值与时间序列中的点之间的差异。他们通过最小化目标函数来估计生成分区。不幸的是,他们提出的算法是非收敛的,无法保证就其目标甚至找到局部最优解。困难是启发式最近邻居符号分配步骤。另外,我们针对他们的目标开发了一种新颖的局部最优算法。我们应用具有保证的下降差异的迭代最近邻符号分配,从而实现整个时间序列的联合局部最优符号化。尽管大多数以前的方法将生成帧的估计作为状态空间划分问题来进行帧估计,但我们认识到最小化Hirata等。 (2004)目标函数不会引起状态空间的明确划分,而是由整个时间序列组成的空间(有效地,聚集在(无数)无限维空间中)。我们的方法还相当于一种新型的滑块有损源编码。关于几种方法的改进,已经证明了用于符号化混沌图的流行方法的改进。考虑到混沌图和在多晶合金材料中的故障应用,我们还将我们的方法应用于时间序列异常检测。

著录项

  • 来源
    《Neural computation》 |2018年第9期|2500-2529|共30页
  • 作者单位

    The Pennsylvania State University;

    The Pennsylvania State University;

    The Pennsylvania State University;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号