首页> 外文期刊>Multidiscipline modeling in materials and structures >Multi-objective optimization in wire-EDM process using grey relational analysis method (GRA) and backpropagation neural network-genetic algorithm (BPNN-GA) methods
【24h】

Multi-objective optimization in wire-EDM process using grey relational analysis method (GRA) and backpropagation neural network-genetic algorithm (BPNN-GA) methods

机译:使用灰色关系分析方法(GRA)和背部化神经网络 - 遗传算法(BPNN-GA)方法的多目标优化

获取原文
获取原文并翻译 | 示例

摘要

Purpose - The purpose of this paper is to investigate prediction and optimization of multiple performance characteristics in the wire electrical discharge machining (wire-EDM) process of SKD 61 (AISIH13) tool steel. Design/methodology/approach - The experimental studies were conducted under varying wire-EDM process parameters, which were arc on time, on time, open voltage, off time and servo voltage. The optimized responses were recast layer thickness (RLT), surface roughness (SR) and surface crack density (SCD). Arc on time was set at two different levels, whereas the other four parameters were set at three different levels. Based on Taguchi method, an L18 mixed-orthogonal array was selected for the experiments. Further, three methods, namely grey relational analysis (GRA), backpropagation neural network (BPNN) and genetic algorithm (GA), were applied separately. GRA was performed to obtain a rough estimation of optimum drilling parameters. The influences of drilling parameters on multiple performance characteristics were determined by using percentage contributions. BPNN architecture was determined to predict the multiple performance characteristics. GA method was then applied to determine the optimum wire-EDM parameters. Findings - The minimum RLT, SR and SCD could be obtained by setting arc on time, on time, open voltage, off time and servo voltage at 2 ms, 3 ms, 90 volt, 10 ms and 38 volt, respectively. The experimental confirmation results showed that BPNN-based GA optimization method could accurately predict and significantly improve all of the responses. Originality/value - There were no publications regarding multi-response optimization using a combination of GRA and BPNN-based GA methods during wire-EDM process available. Keywords GRA, BPNN-GA, SKD 61, Wire-EDM.
机译:目的 - 本文的目的是研究SKD 61(AISIH13)工具钢的线电放电加工(线EDM)过程中多种性能特性的预测和优化。设计/方法/方法 - 在不同的线EDM工艺参数下进行实验研究,即在时间,按时,开路电压,关闭时间和伺服电压。优化的响应是重塑层厚度(RLT),表面粗糙度(SR)和表面裂纹密度(SCD)。按时弧设置为两个不同的级别,而另外四个参数设置为三个不同的级别。基于Taguchi方法,选择L18混合正交阵列进行实验。此外,分别应用三种方法,即灰色关系分析(GRA),反向衰减神经网络(BPNN)和遗传算法(GA)。进行GRA以获得最佳钻井参数的粗略估计。利用百分比贡献确定钻井参数对多种性能特征的影响。确定BPNN架构预测多个性能特征。然后应用GA方法以确定最佳线EDM参数。调查结果 - 通过在2ms,3毫秒,90伏,10ms和38伏的时间,按时,打开电压,关闭时间和伺服电压设置电弧,可以通过设置电弧,开路,关闭时间和伺服电压来获得最小RLT,SR和SCD。实验证据结果表明,基于BPNN的GA优化方法可以准确地预测和显着改善所有反应。原创性/值 - 在线EDM过程中使用GRA和基于BPNN的GA方法的组合没有关于多响应优化的出版物。关键词GRA,BPNN-GA,SKD 61,线EDM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号