首页> 外文期刊>Engineering Computations >Multi-objective optimization in face milling process with cryogenic cooling using grey fuzzy analysis and BPNN-GA methods
【24h】

Multi-objective optimization in face milling process with cryogenic cooling using grey fuzzy analysis and BPNN-GA methods

机译:基于灰色模糊分析和BPNN-GA方法的低温冷却面铣削过程多目标优化

获取原文
获取原文并翻译 | 示例

摘要

Purpose The purpose of this study is to investigate the prediction and optimization of multiple performance characteristics in the face milling process of tool steel ASSAB XW-42. Design/methodology/approach The face milling parameters (cutting speed, feed rate and axial depth of cut) and flow rate (FR) of cryogenic cooling were optimized with consideration of multiple performance characteristics, i.e. surface roughness (SR), cutting force (F-c) and metal removal rate (MRR). FR of cryogenic cooling has two levels, whereas the three face milling parameters each have three levels. Using Taguchi method, an L-18 mixed-orthogonal array was selected as the design of experiments. The rough estimation of the optimum face milling parameters was determined by using grey fuzzy analysis. The global optimum face milling parameters were searched by applying the backpropagation neural network-based genetic algorithm (BPNN-GA) method. Findings The optimum SR, cutting force (F-c) and MRR could be obtained by setting FR, cutting speed, feed rate and axial depth of cut at 0.5 l/min, 280 m/min, 90 mm/min and 0.2 mm, respectively. The experimental confirmation results showed that BPNN-based GA optimization method could accurately predict and significantly improve all of the multiple performance characteristics. Originality/value To the best of the authors' knowledge, there were no publications available regarding multi-response optimization using the combination of grey fuzzy analysis and BPNN-based GA methods during cryogenically face milling process.
机译:目的本研究的目的是研究工具钢ASSAB XW-42的端面铣削过程中多种性能特征的预测和优化。设计/方法/方法考虑到多种性能特征,即表面粗糙度(SR),切削力(Fc),优化了低温冷却的平面铣削参数(切削速度,进给速度和切削轴向深度)和流速(FR)。 )和金属去除率(MRR)。低温冷却的FR有两个级别,而三个面铣参数每个都有三个级别。使用田口法,选择L-18混合正交阵列作为实验设计。最佳平面铣削参数的粗略估计是通过使用灰色模糊分析确定的。应用基于BP神经网络的遗传算法(BPNN-GA)搜索全局最优的面铣参数。结果通过将FR,切削速度,进给速度和切削轴向深度分别设置为0.5 l / min,280 m / min,90 mm / min和0.2 mm,可以获得最佳的SR,切削力(F-c)和MRR。实验确认结果表明,基于BPNN的GA优化方法可以准确预测并显着改善所有多种性能特征。独创性/价值据作者所知,没有文献涉及在低温端面铣削过程中使用灰色模糊分析和基于BPNN的遗传算法相结合的多响应优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号