首页> 外文期刊>IEEE transactions on mobile computing >A Super-Resolution-Assisted Fingerprinting Method Based on Channel Impulse Response Measurement for Indoor Positioning
【24h】

A Super-Resolution-Assisted Fingerprinting Method Based on Channel Impulse Response Measurement for Indoor Positioning

机译:基于通道脉冲响应测量的室内定位超高分辨率辅助指纹方法

获取原文
获取原文并翻译 | 示例

摘要

The channel impulse response (CIR), which characterizes the multipath channel between a transmitter and a receiver, can serve as a received position signature for indoor position fingerprinting (FP). Since it takes large system bandwidth to distinguish individual paths along which the signal waves travel in an indoor environment, a small bandwidth may yield an unsatisfactory performance of FP based on mere CIR. In this paper, we apply the multiple signal classification (MUSIC) algorithm, a super-resolution method, to unveil the path-delay signatures covered by bandwidth-limited CIRs. With the pseudospectrum evaluated with MUSIC, we resolve and identify the arrival times of the individual paths at a sub-sample precision. We further propose a super-resolution-aided fingerprinting (SFP) algorithm to estimate the receiver & x0027;s position by taking the averaged positions of the reference points (RPs) of similar FP signatures with weights evaluated by the difference in pseudospectrum and received power. Experiments in an indoor environment show that SFP reduces the positioning error compared to the FP based on conventional channel state information (CSI), and that demands fewer infrastructures and less protocol complexity than CIR-based FP does to achieve similar performance.
机译:表征发送器和接收器之间多径信道的信道冲激响应(CIR)可以用作室内位置指纹(FP)的接收位置签名。由于要在室内环境中区分信号波传播的各个路径需要大的系统带宽,因此,仅基于CIR,小的带宽可能会导致FP的性能无法令人满意。在本文中,我们应用了超分辨率方法多信号分类(MUSIC)算法来揭示带宽受限CIR所覆盖的路径延迟签名。利用MUSIC评估的伪谱,我们可以解析并确定单个路径的到达时间,且采样精度为亚。我们进一步提出了一种超分辨率辅助指纹(SFP)算法,通过获取相似FP签名的参考点(RP)的平均位置,并通过伪频谱和接收功率的差异来评估权重,从而估计接收器的位置。 。在室内环境中进行的实验表明,与基于常规信道状态信息(CSI)的FP相比,SFP可以减少定位误差,并且与基于CIR的FP相比,SFP需要更少的基础结构和协议复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号