首页> 外文期刊>Microelectronics & Reliability >DRES: Data recovery for condition monitoring to enhance system reliability
【24h】

DRES: Data recovery for condition monitoring to enhance system reliability

机译:DRES:用于状态监视的数据恢复,以增强系统可靠性

获取原文
获取原文并翻译 | 示例

摘要

The system reliability depends heavily on the sensed condition data which are mainly collected by various types of sensors. The missing or faulty condition data can result in wrong decision-making or lead to system fault. To realize data integrity for system condition monitoring, one data-driven framework for recovering condition data is proposed in this article. The proposed model is combined by mutual information and Multivariable Linear Regression (MLR).The correlations among condition monitoring data sets are firstly analysed by mutual information. Then, MLR is utilized to recover condition monitoring data. A case study of aircraft engine condition monitoring data sets which are offered by National Aeronautics and Space Administration Ames Research Center is carried out to evaluate the performance of the data-driven framework. (C) 2016 Elsevier Ltd. All rights reserved.
机译:系统可靠性在很大程度上取决于主要由各种类型的传感器收集的感测状态数据。状态数据的缺失或错误会导致错误的决策或导致系统故障。为了实现系统状态监测的数据完整性,本文提出了一种数据驱动的状态数据恢复框架。该模型通过互信息和多元线性回归(MLR)相结合。首先通过互信息分析状态监测数据集之间的相关性。然后,利用MLR恢复状态监视数据。由美国国家航空航天局艾姆斯研究中心提供的飞机发动机状态监测数据集的案例研究旨在评估数据驱动框架的性能。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号