首页> 外文期刊>Microelectronics & Reliability >FESeR: A data-driven framework to enhance sensor reliability for the system condition monitoring
【24h】

FESeR: A data-driven framework to enhance sensor reliability for the system condition monitoring

机译:FESeR:一种数据驱动的框架,可增强传感器可靠性以进行系统状态监测

获取原文
获取原文并翻译 | 示例

摘要

The collected system information is critical for condition monitoring (CM) which is mainly implemented by utilizing various types of sensors. Hence, the reliability of sensors directly influences the evaluation result of CM. One type of data-driven framework to enhance sensor reliability is realized in this article. To be specific, the combination of sensor selection method and data anomaly detection is achieved by information theory and Kernel Principle Component Analysis (KACA). The sensors which can provide more valuable information for system CM are selected. The correlations among sensors are analysed by mutual information. Finally, the data anomaly detection is conducted by utilizing the correlations among sensor data sets and KPCA. The effectiveness is proved by employing sensor data sets from National Aeronautics and Space Administration Ames Research Center. (C) 2016 Elsevier Ltd. All rights reserved.
机译:收集的系统信息对于状态监控(CM)至关重要,它主要通过利用各种类型的传感器来实现。因此,传感器的可靠性直接影响CM的评估结果。本文实现了一种提高传感器可靠性的数据驱动框架。具体而言,通过信息论和核主成分分析(KACA)实现了传感器选择方法和数据异常检测的结合。选择可以为系统CM提供更多有价值信息的传感器。通过互信息分析传感器之间的相关性。最后,利用传感器数据集和KPCA之间的相关性进行数据异常检测。通过使用美国国家航空航天局Ames研究中心的传感器数据集证明了其有效性。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号