首页> 外文期刊>Microelectronics & Reliability >Wafer level measurements and numerical analysis of self-heating phenomena in nano-scale SOI MOSFETs
【24h】

Wafer level measurements and numerical analysis of self-heating phenomena in nano-scale SOI MOSFETs

机译:晶圆级SOI MOSFET的晶圆级测量和自热现象的数值分析

获取原文
获取原文并翻译 | 示例

摘要

We present an experimental technique and a Finite Element thermal simulation for the determination of the temperature elevation in Silicon on Insulator(SOI) MOSFETs due to self-heating. We evaluate the temperature elevation in two steps, as we calibrate the gate resistance over temperature with the transistor at off state at a first stage, and then we deduce the temperature elevation through gate resistance measurements. We simulate the self-heating phenomena in a Finite Elements Method (FEM) environment, both with 2D and 3D models. In order to set up the simulations, we weight the effects of several parameters, such as thermal material properties, the modeling of heat generation and a careful setting of boundary conditions. We present typical temperature fields and local heat fluxes, thus giving concrete indications for solving thermal reliability issues. Simulation results show temperature elevations up to approximately 120 K in the hot spot, 70 K in the gate and 7 K in the Back End of Line (BEoL). The 3D model gives results that are satisfying over the whole set of MOSFETs we consider in this work. Temperature elevation strongly depends on physical dimensions, where transistors endowed with shorter gates suffer from more severe self-heating. We propose a simplified model based on geometrical parameters that predict maximum and gate temperatures, obtaining satisfying results. Since correlation with measurements confirms the correctness of our model, we believe that our simulations could be a useful tool to determine accurate reliability rules and in a context of thermal aware design. (C) 2016 Published by Elsevier Ltd.
机译:我们介绍了一种实验技术和有限元热仿真,用于确定由于自热导致的绝缘子(SOI)MOSFET上硅的温度升高。我们分两步评估温度升高,这是因为在第一阶段中,当晶体管处于截止状态时,我们会在整个温度范围内校准栅极电阻,然后通过栅极电阻测量得出温度升高。我们使用2D和3D模型在有限元方法(FEM)环境中模拟自热现象。为了进行仿真,我们权衡了几个参数的影响,例如热材料属性,热量生成的模型以及边界条件的仔细设置。我们介绍了典型的温度场和局部热通量,从而为解决热可靠性问题提供了具体的指示。仿真结果显示,热点处的温度升高高达120 K,浇口处的温度升高高达70 K,线后端(BEoL)的温度升高高达7K。 3D模型给出的结果在我们在这项工作中考虑的整个MOSFET集合中都令人满意。温度升高在很大程度上取决于物理尺寸,其中具有较短栅极的晶体管会遭受更严重的自发热。我们提出了一个基于几何参数的简化模型,该模型可预测最高温度和浇口温度,从而获得令人满意的结果。由于与测量值的相关性确认了我们模型的正确性,因此我们认为,在热敏设计的背景下,我们的仿真可以成为确定准确可靠性规则的有用工具。 (C)2016由Elsevier Ltd.出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号