首页> 外文期刊>Microelectronics & Reliability >A review of pulsed NBTI in P-channel power VDMOSFETs
【24h】

A review of pulsed NBTI in P-channel power VDMOSFETs

机译:P沟道功率VDMOSFET中的脉冲NBTI综述

获取原文
获取原文并翻译 | 示例

摘要

Negative bias temperature instability (NBTI) is a phenomenon commonly observed in p-channel metal-oxide semiconductor (MOS) devices simultaneously exposed to negative gate voltage and elevated temperature. In this study we provide overview of threshold voltage instabilities observed in commercial p-channel power vertical double-diffused MOS field-effect transistors (VDMOSFET) IRF9520 under the pulsed NBT stress conditions. These instabilities are caused by the NBT stress induced changes in oxide trapped charge and interface trap densities, and are more significant at higher voltages and/or temperatures. NBT stress induced degradation under the pulsed gate bias conditions is generally lower as compared to static stress. Less significant degradation of threshold voltage found after pulsed bias stressing is ascribed to the recovery effects. Partial recovery occurs during the low level of pulsed gate voltage as a consequence of the removal of recoverable component of degradation and is associated with passivation/neutralization of shallow oxide traps that have not been transformed into the deeper traps (permanent component). A specific approach has been applied in this study in order to assess the recoverable and permanent components of degradation in commercial p-channel power VDMOSFETs subjected to NBT stressing. Experimental data have been analysed in terms of the mechanisms responsible for changes in the densities of gate oxide charge and interface traps.
机译:负偏压温度不稳定性(NBTI)是在同时暴露于负栅极电压和高温的p沟道金属氧化物半导体(MOS)器件中常见的现象。在这项研究中,我们提供了在脉冲NBT应力条件下,在商用p沟道功率垂直双扩散MOS场效应晶体管(VDMOSFET)IRF9520中观察到的阈值电压不稳定性的概述。这些不稳定性是由NBT应力引起的氧化物陷阱电荷和界面陷阱密度的变化所引起的,并且在较高的电压和/或温度下更为明显。与静态应力相比,在脉冲栅极偏置条件下,NBT应力引起的退化通常较低。脉冲偏置应力后发现的阈值电压降幅较小,归因于恢复效果。由于去除了可恢复的退化成分,因此在较低的脉冲栅极电压电平期间发生了部分恢复,并与尚未转化为较深陷阱(永久成分)的浅氧化物陷阱的钝化/中和有关。为了评估承受NBT应力的商用p沟道功率VDMOSFET中退化的可恢复成分和永久成分,本研究中采用了一种特定方法。实验数据已根据引起栅极氧化物电荷和界面陷阱密度变化的机理进行了分析。

著录项

  • 来源
    《Microelectronics & Reliability》 |2018年第3期|28-36|共9页
  • 作者单位

    Univ Nis, Fac Elect Engn, Aleksandra Medvedeva 14, Nish 18000, Serbia;

    Univ Nis, Fac Elect Engn, Aleksandra Medvedeva 14, Nish 18000, Serbia;

    Univ Nis, Fac Elect Engn, Aleksandra Medvedeva 14, Nish 18000, Serbia;

    Univ Nis, Fac Elect Engn, Aleksandra Medvedeva 14, Nish 18000, Serbia;

    Univ Nis, Fac Elect Engn, Aleksandra Medvedeva 14, Nish 18000, Serbia;

    Univ Nis, Fac Elect Engn, Aleksandra Medvedeva 14, Nish 18000, Serbia;

    Univ Nis, Fac Civil Engn & Architecture, Aleksandra Medvedeva 14, Nish 18000, Serbia;

    Bulgarian Acad Sci, Inst Solid State Phys, Sofia, Bulgaria;

    Bulgarian Acad Sci, Inst Solid State Phys, Sofia, Bulgaria;

    Univ Nis, Fac Elect Engn, Aleksandra Medvedeva 14, Nish 18000, Serbia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号