首页> 外文期刊>Methodology and Computing in Applied Probability >An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial Optimization, and Counting
【24h】

An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial Optimization, and Counting

机译:稀有事件概率估计,组合优化和计数的高效算法

获取原文
获取原文并翻译 | 示例

摘要

Although importance sampling is an established and effective sampling and estimation technique, it becomes unstable and unreliable for high-dimensional problems. The main reason is that the likelihood ratio in the importance sampling estimator degenerates when the dimension of the problem becomes large. Various remedies to this problem have been suggested, including heuristics such as resampling. Even so, the consensus is that for large-dimensional problems, likelihood ratios (and hence importance sampling) should be avoided. In this paper we introduce a new adaptive simulation approach that does away with likelihood ratios, while retaining the multi-level approach of the cross-entropy method. Like the latter, the method can be used for rare-event probability estimation, optimization, and counting. Moreover, the method allows one to sample exactly from the target distribution rather than asymptotically as in Markov chain Monte Carlo. Numerical examples demonstrate the effectiveness of the method for a variety of applications.
机译:尽管重要性采样是一种既定的有效采样和估计技术,但对于高维问题,它变得不稳定且不可靠。主要原因是当问题的规模变大时,重要性抽样估计器中的似然比会退化。已经提出了对该问题的各种补救措施,包括诸如重新采样之类的试探法。即使这样,共识是对于大型问题,应避免似然比(以及重要性抽样)。在本文中,我们介绍了一种新的自适应仿真方法,该方法消除了似然比,同时保留了交叉熵方法的多级方法。与后者一样,该方法可用于稀有事件概率估计,优化和计数。此外,该方法允许人们从目标分布中精确采样,而不是像马尔可夫链蒙特卡洛中那样渐近地采样。数值实例证明了该方法在各种应用中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号