首页> 外文期刊>Mechatronics, IEEE/ASME Transactions on >Optimal Path Planning and Control of Assembly Robots for Hard-Measuring Easy-Deformation Assemblies
【24h】

Optimal Path Planning and Control of Assembly Robots for Hard-Measuring Easy-Deformation Assemblies

机译:难测量易变形组件的装配机器人的最佳路径规划和控制

获取原文
获取原文并翻译 | 示例

摘要

Assembly robots are widely used in the electronics and automotive industries. However, assembly robots still face formidable challenges for assembling large-scale heavy-weight components such as the tail of the plane. First, the large-scale component is difficult to measure; thus, the optimal assembly path is difficult to obtain. To this end, a learning from demonstration-based optimal path planning method is developed and implemented. Second, the deformation caused by a heavy-weight component will lead to a large motion error and could cause damage to the component. To solve this problem, a Gaussian process regression (GPR)-based deformation prediction and compensation method is presented to improve the robot motion accuracy. The simulation results show that the proposed GPR-based deformation compensation method can achieve high accuracy. An experimental prototype was developed to evaluate the proposed methods, and the results demonstrate the effectiveness of the proposed methods. Therefore, the proposed methods provide a path toward hard-measuring easy-deformation assembly task.
机译:组装机器人广泛用于电子和汽车行业。但是,组装机器人在组装大型重量级组件(例如飞机的机尾)方面仍然面临着巨大的挑战。首先,大型组件难以衡量;因此,难以获得最佳的组装路径。为此,开发并实施了基于演示的最佳路径规划方法的学习。其次,由重部件造成的变形将导致较大的运动误差,并可能导致部件损坏。针对这一问题,提出了一种基于高斯过程回归(GPR)的变形预测与补偿方法,以提高机器人的运动精度。仿真结果表明,所提出的基于GPR的变形补偿方法可以达到较高的精度。实验原型被开发来评估所提出的方法,结果证明了所提出方法的有效性。因此,所提出的方法提供了通往难以测量的易变形组装任务的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号