首页> 外文期刊>Mechanical systems and signal processing >Parameters identification of Van der Pol-Duffing oscillators via particle swarm optimization and differential evolution
【24h】

Parameters identification of Van der Pol-Duffing oscillators via particle swarm optimization and differential evolution

机译:基于粒子群优化和微分进化的范德波尔-达芬振荡器参数辨识

获取原文
获取原文并翻译 | 示例

摘要

Many of the proposed approaches for non-linear systems control are developed under the assumption that all involved parameters are known in advance. Unfortunately, their estimation is not so simple because the nature of the non-linear behaviors is very complex in the most part of the cases.rnIn view of this complication, parameters identification of non-linear oscillators has attracted increasing interests in various research fields: from a pure mathematical point-of-view, parameters identification can be formalized as a multi-dimensional optimization problem, typically over real bounded domains. In doing this, the use of the so-called non-classical methods based on soft computing theories seems to be promising because they do not require a priori information and the robustness of the identification against the noise contamination is satisfactory. However, further studies are required to evaluate the general effectiveness of these methodologies. In this sense, the paper addresses the consistency of two classes of soft computing based methods for the identification of Van der Pol-Duffing oscillators. A large numerical investigation has been conducted to evaluate the performances of six differential evolution algorithms (including a modified differential evolution algorithm proposed by the authors) and four swarm intelligence based algorithms (including a chaotic particle swarm optimization algorithm). Single well, double well and double-hump oscillators are identified and noisy system responses are considered in order to evaluate the robustness of the identification processes. The investigated soft computing techniques behave very well and thus they are suitable for practical applications.
机译:非线性系统控制的许多建议方法是在所有相关参数均事先已知的前提下开发的。不幸的是,由于非线性行为的性质在大多数情况下非常复杂,因此它们的估计不是那么简单。鉴于这种复杂性,非线性振荡器的参数识别在各个研究领域引起了越来越多的兴趣:从纯粹的数学观点来看,参数识别可以形式化为多维优化问题,通常是在实际有界域上。为此,基于软计算理论的所谓非经典方法的使用似乎是有希望的,因为它们不需要先验信息,并且识别对噪声污染的鲁棒性令人满意。但是,需要进一步的研究来评估这些方法的总体有效性。从这个意义上讲,本文讨论了基于两类基于软计算的方法识别范德波尔-达芬振荡器的一致性。进行了大量的数值研究,以评估六种差分进化算法(包括作者提出的改进的差分进化算法)和四种基于群体智能的算法(包括混沌粒子群优化算法)的性能。确定单井,双井和双峰振荡器,并考虑噪声系统响应,以评估识别过程的鲁棒性。所研究的软计算技术表现非常好,因此适合于实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号