首页> 外文期刊>Mechanical systems and signal processing >The experimental identification of magnetorheological dampers and evaluation of their controllers
【24h】

The experimental identification of magnetorheological dampers and evaluation of their controllers

机译:磁流变阻尼器的实验辨识及其控制器的评估

获取原文
获取原文并翻译 | 示例

摘要

Magnetorheological (MR) fluid dampers are semi-active control devices that have been applied over a wide range of practical vibration control applications. This paper concerns the experimental identification of the dynamic behaviour of an MR damper and the use of the identified parameters in the control of such a damper. Feed-forward and recurrent neural networks are used to model both the direct and inverse dynamics of the damper. Training and validation of the proposed neural networks are achieved by using the data generated through dynamic tests with the damper mounted on a tensile testing machine. The validation test results clearly show that the proposed neural networks can reliably represent both the direct and inverse dynamic behaviours of an MR damper. The effect of the cylinder's surface temperature on both the direct and inverse dynamics of the damper is studied, and the neural network model is shown to be reasonably robust against significant temperature variation. The inverse recurrent neural network model is introduced as a damper controller and experimentally evaluated against alternative controllers proposed in the literature. The results reveal that the neural-based damper controller offers superior damper control. This observation and the added advantages of low-power requirement, extended service life of the damper and the minimal use of sensors, indicate that a neural-based damper controller potentially offers the most cost-effective vibration control solution among the controllers investigated.
机译:磁流变(MR)流体阻尼器是半主动控制设备,已广泛应用于实际的振动控制应用中。本文涉及MR阻尼器动态行为的实验识别,以及在这种阻尼器的控制中所识别参数的使用。前馈和递归神经网络用于对阻尼器的正向和反向动力学建模。通过将动态测试生成的数据与安装在拉力测试机上的阻尼器一起使用,可以对所提出的神经网络进行训练和验证。验证测试结果清楚地表明,所提出的神经网络可以可靠地表示MR阻尼器的正向和反向动态行为。研究了气缸表面温度对风门的正向和反向动力学的影响,并且神经网络模型显示出对显着的温度变化具有合理的鲁棒性。反向递归神经网络模型作为阻尼器控制器引入,并针对文献中提出的替代控制器进行了实验评估。结果表明,基于神经的阻尼器控制器可提供出色的阻尼器控制。这种观察结果以及低功耗要求,减震器的使用寿命延长和传感器的最少使用所带来的其他优势表明,基于神经的减震器控制器可能会在所研究的控制器中提供最具成本效益的振动控制解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号