首页> 外文期刊>Smart structures and systems >Real-time model updating for magnetorheological damper identification: an experimental study
【24h】

Real-time model updating for magnetorheological damper identification: an experimental study

机译:磁流变阻尼器识别的实时模型更新:一项实验研究

获取原文
获取原文并翻译 | 示例

摘要

Magnetorheological (MR) damper is a type of controllable device widely used in vibration mitigation. This device is highly nonlinear, and exhibits strongly hysteretic behavior that is dependent on both the motion imposed on the device and the strength of the surrounding electromagnetic field. An accurate model for understanding and predicting the nonlinear damping force of the MR damper is crucial for its control applications. The MR damper models are often identified off-line by conducting regression analysis using data collected under constant voltage. In this study, a MR damper model is integrated with a model for the power supply unit (PSU) to consider the dynamic behavior of the PSU, and then a real-time nonlinear model updating technique is proposed to accurately identify this integrated MR damper model with the efficiency that cannot be offered by off-line methods. The unscented Kalman filter is implemented as the updating algorithm on a cyber-physical model updating platform. Using this platform, the experimental study is conducted to identify MR damper models in real-time, under in-service conditions with time-varying current levels. For comparison purposes, both off-line and real-time updating methods are applied in the experimental study. The results demonstrate that all the updated models can provide good identification accuracy, but the error comparison shows the real-time updated models yield smaller relative errors than the off-line updated model. In addition, the real-time state estimates obtained during the model updating can be used as feedback for potential nonlinear control design for MR dampers.
机译:磁流变(MR)阻尼器是一种可控设备,广泛用于减振。该设备是高度非线性的,并且表现出强烈的磁滞行为,该行为既取决于施加在设备上的运动,又取决于周围电磁场的强度。用于理解和预测MR阻尼器非线性阻尼力的准确模型对其控制应用至关重要。 MR阻尼器模型通常通过使用恒定电压下收集的数据进行回归分析来离线识别。在这项研究中,将MR阻尼器模型与电源单元(PSU)的模型集成在一起,以考虑PSU的动态行为,然后提出一种实时非线性模型更新技术来准确识别此集成MR阻尼器模型离线方法无法提供的效率。在网络物理模型更新平台上,将无味卡尔曼滤波器实现为更新算法。使用该平台,进行了实验研究,以在服役条件下以时变电流水平实时识别MR阻尼器模型。为了进行比较,在实验研究中应用了离线和实时更新方法。结果表明,所有更新的模型都可以提供良好的识别精度,但误差比较表明,实时更新的模型产生的相对误差要小于离线更新的模型。另外,在模型更新过程中获得的实时状态估计值可以用作MR阻尼器潜在非线性控制设计的反馈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号