首页> 外文期刊>Mechanical systems and signal processing >Degradation trend estimation of slewing bearing based on LSSVM model
【24h】

Degradation trend estimation of slewing bearing based on LSSVM model

机译:基于LSSVM模型的回转支承退化趋势估计

获取原文
获取原文并翻译 | 示例

摘要

A novel prediction method is proposed based on least squares support vector machine (LSSVM) to estimate the slewing bearing's degradation trend with small sample data. This method chooses the vibration signal which contains rich state information as the object of the study. Principal component analysis (PCA) was applied to fuse multi-feature vectors which could reflect the health state of slewing bearing, such as root mean square, kurtosis, wavelet energy entropy, and intrinsic mode function (IMF) energy. The degradation indicator fused by PCA can reflect the degradation more comprehensively and effectively. Then the degradation trend of slewing bearing was predicted by using the LSSVM model optimized by particle swarm optimization (PSO). The proposed method was demonstrated to be more accurate and effective by the whole life experiment of slewing bearing. Therefore, it can be applied in engineering practice.
机译:提出了一种基于最小二乘支持向量机(LSSVM)的预测方法,以较少的样本数据估计回转支承的退化趋势。该方法选择包含丰富状态信息的振动信号作为研究对象。应用主成分分析(PCA)融合多特征向量,这些向量可以反映回转支承的健康状态,例如均方根,峰度,小波能量熵和内模函数(IMF)能量。 PCA融合的退化指标可以更全面,更有效地反映退化。然后利用粒子群优化算法(PSO)优化的LSSVM模型预测了回转支承的退化趋势。回转支承的整个寿命实验证明了该方法的准确性和有效性。因此,可以在工程实践中应用。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2016年第8期|353-366|共14页
  • 作者单位

    College of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 210000, China;

    College of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 210000, China;

    College of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 210000, China;

    College of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 210000, China;

    College of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 210000, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Slewing bearing; Degradation; LSSVM; PCA; PSO;

    机译:回转支承;降解;LSSVM;PCA;粒子群算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号