首页> 外文期刊>Mechanical systems and signal processing >Stationary subspaces-vector autoregressive with exogenous terms methodology for degradation trend estimation of rolling and slewing bearings
【24h】

Stationary subspaces-vector autoregressive with exogenous terms methodology for degradation trend estimation of rolling and slewing bearings

机译:静止子空间 - 矢量归类与外源性术语方法,用于降解滚动和回转轴承的趋势估计

获取原文
获取原文并翻译 | 示例

摘要

Degradation trend estimation (DTE) of rotating machinery plays a vital role in prognostics and health management (PHM). It enables us to foresee future conditions and avoid unexpected risks. Recently, considerable accomplishments in the field of rotating machinery PHM has achieved through regression analysis based data-driven prognostics, which assist in directly analyzing and exploring the relationships between degradation trend and characterization indicators. Intetnal static structures still widely exist in most of them, inevitably restricting the natural extrapolation or generalization to future moments. Thus, the autoregression theories with complete mathematical foundations are first introduced and extended the methodologies for rotating machinery DTE. Meanwhile, the characterization ability of degradation or damage information from a single indicator rather than multi-endogenous indicators considering their causality and interactions may significantly reduce in the existing regression analysis based prognostics, and it further influences the final prognostics. Therefore, the idea of exploring internal dynamic structural regression based prognostics containing establishing multi-endogenous degradation indicators with weak-stationary traits and an interpretable and lightweight vector autoregression based DTE modeling method is motivated. The above dilemmas are well addressed through the in-depth study of autoregression based prognostics, namely stationary subspaces-vector autoregressive with exogenous terms (SSVARX). To be specific, multi-channel vibration signals are first picked up, and non-stationary signals are converted into time and frequency domain based weak-stationary degradation indicators via double stationary subspace decomposition and differential operation. Then the above two domain endogenous variables are feed into our proposed DTE models after stationarity test, order determination, and impulse response analysis. Finally, promising results from two run-to-failed life tests of rolling and slewing bearings are obtained via our multi-endogenous variables based extrapolation model. Compared with existing prediction methodologies, SSVARX of this study achieves not only high-accurate prediction results but also fast-computing speed and reasonable mathematical supports.
机译:旋转机械的退化趋势估计(DTE)在预后和健康管理(PHM)中起着至关重要的作用。它使我们能够预见到未来的条件并避免意外风险。最近,通过基于数据驱动的预测的回归分析实现了旋转机械PHM领域的相当大成就,有助于直接分析和探索降解趋势和表征指标之间的关系。大多数情况下仍然广泛存在的Intetal静态结构,不可避免地限制了未来时刻的自然推断或泛化。因此,首先介绍了具有完整数学基础的自回归理论并扩展了旋转机械DTE的方法。同时,考虑其因果关系和相互作用的单个指标而不是多内源指标的劣化或损坏信息的表征能力可能显着降低了现有的基于追溯分析的预测,并且进一步影响了最终的预后。因此,探讨了基于内部动态结构回归的预测,其含有建立具有弱固定性状的多内源性降解指标和可解释和轻量级向量的基于DTE建模方法的思想。通过深入研究基于自动增加的预后性,即静止子空间 - 传染媒介归类系与外源性术语(SSVARX)进行了良好的困境。要具体地,首先拾取多通道振动信号,并且通过双固定子空间分解和差分操作将非静止信号转换为基于时间和频域的弱静止劣化指示。然后,上述两个域内源性变量将在实质性测试,订单确定和脉冲响应分析之后进入我们所提出的DTE模型。最后,通过我们的多内源性变量的外推模型获得了来自滚动和回转轴承的两个碰撞终止终生命测试的有希望的结果。与现有的预测方法相比,本研究的SSVARX不仅实现了高准确的预测结果,而且实现了快速计算的速度和合理的数学支撑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号