首页> 外文期刊>Mechanical systems and signal processing >Structured machine learning tools for modelling characteristics of guided waves
【24h】

Structured machine learning tools for modelling characteristics of guided waves

机译:结构化机器学习工具,用于建模引导波的特性

获取原文
获取原文并翻译 | 示例

摘要

The use of ultrasonic guided waves to probe the materials/structures for damage continues to increase in popularity for non-destructive evaluation (NDE) and structural health mon-itoring (SHM). The use of high-frequency waves such as these offers an advantage over low-frequency methods from their ability to detect damage on a smaller scale. However, in order to assess damage in a structure, and implement any NDE or SHM tool, knowledge of the behaviour of a guided wave throughout the material/structure is important (espe-cially when designing sensor placement for SHM systems). Determining this behaviour is extremely difficult in complex materials, such as fibre-matrix composites, where unique phenomena such as continuous mode conversion takes place. This paper introduces a novel method for modelling the feature-space of guided waves in a composite material. This technique is based on a data-driven model, where prior physical knowledge can be used to create structured machine learning tools; where constraints are applied to provide said structure. The method shown makes use of Gaussian processes, a full Bayesian analysis tool, and in this paper it is shown how physical knowledge of the guided waves can be uti-lised in modelling using an ML tool. This paper shows that through careful consideration when applying machine learning techniques, more robust models can be generated which offer advantages such as extrapolation ability and physical interpretation.
机译:使用超声波引导波来探测损坏的材料/结构持续普及的普及普及(NDE)和结构健康蒙腾(SHM)的普及。使用高频波,例如这些高频波通过其检测较小规模损坏的低频方法提供了优势。然而,为了评估结构中的损坏,并实现任何NDE或SHM工具,在整个材料/结构中的引导波的行为知识是重要的(在设计SHM系统的传感器放置时,ESPE-CILY)。在复杂的材料中确定这种行为非常困难,例如纤维矩阵复合材料,其中发生诸如连续模式转换的独特现象。本文介绍了一种用于在复合材料中建模引导波的特征空间的新方法。该技术基于数据驱动模型,其中先前的物理知识可用于创建结构化机器学习工具;应用限制以提供所述结构的地方。所示的方法利用高斯工艺,一个完整的贝叶斯分析工具,并且在本文中,示出了如何使用ML工具进行建模中的引导波的物理知识。本文表明,在施加机器学习技术时仔细考虑,可以产生更强大的模型,这提供了外推能力和物理解释等优点。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2021年第7期|107628.1-107628.22|共22页
  • 作者单位

    Dynamics Research Croup Department of Mechanical Engineering The University of Sheffield Mappin Building Mappin Street Sheffield S1 3JD United Kingdom;

    Dynamics Research Croup Department of Mechanical Engineering The University of Sheffield Mappin Building Mappin Street Sheffield S1 3JD United Kingdom;

    Dynamics Research Croup Department of Mechanical Engineering The University of Sheffield Mappin Building Mappin Street Sheffield S1 3JD United Kingdom;

    Dynamics Research Croup Department of Mechanical Engineering The University of Sheffield Mappin Building Mappin Street Sheffield S1 3JD United Kingdom;

    Laboratory for Verification and Validation (LW) Europa Avenue Sheffield S9 1ZA United Kingdom;

    Dynamics Research Croup Department of Mechanical Engineering The University of Sheffield Mappin Building Mappin Street Sheffield S1 3JD United Kingdom;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Guided waves; Feature space modelling; Machine learning; Structural health monitoring; Composite plate waves;

    机译:导波;特征空间建模;机器学习;结构健康监测;复合板波;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号