首页> 外文期刊>Mechanical systems and signal processing >Dual-layer optimized selective information fusion using multi-source multi-component mechanical signals for mill load parameters forecasting
【24h】

Dual-layer optimized selective information fusion using multi-source multi-component mechanical signals for mill load parameters forecasting

机译:使用多源多分量机械信号的双层优化选择性信息融合,用于轧机负荷参数预测

获取原文
获取原文并翻译 | 示例

摘要

Ball mill is a heavy mechanical device necessary for grinding. Mill load parameters (MLP) relate to production economic indices and process safety. Mechanical signals of the ball mill are used to estimate MLP by domain experts. However, they can only estimate familiar mills effectively in certain time because of human limitation. A new dual-layer optimized selective information fusion is proposed based on the analysis of the characteristics of mill mechanical signals and cognitive behavior of the domain expert for MLP forecasting (MLPF). An ensemble construction strategy based on multi-component mechanical signals adaptive decomposition is employed to build candidate sub-models by using kernel partial least squares (KPLS). The dual-layer optimization strategy is proposed to build selective ensemble (SEN) KPLS (SENKPLS) with optimized ensemble sub-models and their coefficients, thus realizing the trade-off between prediction accuracies and diversity implicitly. The MLPF models based on SENKPLS are constructed by selective fusion multi-source multi-scale frequency spectral information in terms of the auditory perception process of the simulation domain experts. Results show that the proposed strategy can obtain better forecasting results than other state-of-the-art methods.
机译:球磨机是研磨必不可少的重型机械设备。轧机负荷参数(MLP)与生产经济指标和过程安全性有关。球磨机的机械信号被领域专家用来估计MLP。但是,由于人为因素的限制,他们只能在一定时间内有效地估计熟悉的工厂。在分析轧机机械信号特征和领域专家对MLP预测(MLPF)的认知行为的基础上,提出了一种新的双层优化选择性信息融合方法。采用基于多分量机械信号自适应分解的集成构建策略,通过使用核偏最小二乘(KPLS)建立候选子模型。提出了一种双层优化策略,以建立具有优化的集成子模型及其系数的选择性集成(SEN)KPLS(SENKPLS),从而隐含地实现了预测准确性和多样性之间的权衡。根据仿真领域专家的听觉感知过程,通过选择性融合多源多尺度频谱信息构建了基于SENKPLS的MLPF模型。结果表明,与其他最新方法相比,所提出的策略可以获得更好的预测结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号