机译:使用多源多分量机械信号的双层优化选择性信息融合,用于轧机负荷参数预测
Faculty of Information Technology Beijing University of Technology Beijing 100124 China Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing 100124 China;
State Key Laboratory of Synthetical Automation for Process Industries Northeaster University Shenyang 110004 China;
Automation and Electronic Engineering Academy Qingdao University of Science and Technology Qingdao 266042 China;
Departamento de Control Automatico CINVESTAV-IPN (National Polytechnic Institute) Mexico City 07360 Mexico;
State Key Laboratory of Process Automation in Mining & Metallurgy Beijing 102600 China;
Kernel partial least squares (KPLS); Selective ensemble (SEN) method; Mechanical signal adaptive decomposition; Multi-source multi-scale frequency spectrum; Mill load parameter forecasting (MLPF);
机译:基于多源单尺度机械频谱多特征子集的轧机负荷参数预测
机译:微电网短期负荷预测的参数优化混合预测模型
机译:基于机械振动和磨削过程中的球磨机负荷的机制特征分析和软测量方法
机译:基于多源单尺度机械频谱多特征子集的轧机负荷参数预测
机译:铁铜基多组分钢中熔焊和模拟热影响区的组织演变和力学性能。
机译:基于VVWBO-BVO的GM(1,1)及其基于GRA-IGSA集成算法的参数优化,用于年度电力负荷预测
机译:多个内核支持向量机短期负荷预测基于多源异构整合负载因子