首页> 外文期刊>Mechanical systems and signal processing >Support tensor machine with dynamic penalty factors and its application to the fault diagnosis of rotating machinery with unbalanced data
【24h】

Support tensor machine with dynamic penalty factors and its application to the fault diagnosis of rotating machinery with unbalanced data

机译:具有动态惩罚因子的支持张量机及其在不平衡数据旋转机械故障诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

The fault diagnosis methods of rotating machinery based on machine learning have been developed in the past years, such as support vector machine (SVM) and convolutional neural networks (CNN). SVM just can be only used for the classification of the vector space in which the feature data extracted from raw signals are input data in vector form, so SVM loses its functions while the input feature data are high order tensors which can contain rich feature information of rotating machinery. Moreover, a large number of data are needed in CNN, but it's hard to get large numbers of fault samples of rotating machinery under different conditions. Recently, a kind of tensor classifier called support tensor machines (STM) can solve the problems in the above methods. But when the input samples of STM are unbalanced data, the hyper-plane obtained by the training of STM may not be the optimal hyper-plane and it may reduce the overall classification rate. Therefore, in this paper, a novel tensor classifier called support tensor machine with dynamic penalty factors (DC-STM) is proposed and applied to the fault diagnosis of rotating machinery. In this method, for linear separable case, linear support tensor model with dynamic penalty factors (DC-LSTM) is proposed, which does not ignore the impact of rare support vectors of a class with less training samples on the structural risk. Subsequently, for nonlinear separable case, a tensor kernel function is introduced into DC-LSTM, and nonlinear support tensor model with dynamic penalty factors (DC-NSTM) is proposed. In order to verify the performance of DC-STM in unbalanced data classification, it is applied to fault classification of rotating machinery with unbalanced data. The experimental results show that the proposed method can achieve better classification results when the training samples of rotating machinery are unbalanced data.
机译:近年来,基于支持向量机(SVM)和卷积神经网络(CNN)的基于机器学习的旋转机械故障诊断方法得到了发展。 SVM只能用于向量空间的分类,其中从原始信号中提取的特征数据是矢量形式的输入数据,因此SVM失去了功能,而输入特征数据是高阶张量,其中可以包含丰富的特征信息。旋转机械。而且,CNN中需要大量数据,但是在不同条件下很难获得大量旋转机械故障样本。近来,一种称为支持张量机(STM)的张量分类器可以解决上述方法中的问题。但是,当STM的输入样本是不平衡数据时,通过STM训练获得的超平面可能不是最佳的超平面,并且可能会降低总体分类率。因此,本文提出了一种新型的带有动态罚因子的张量分类器-支持张量机(DC-STM),并将其应用于旋转机械的故障诊断。在这种方法中,对于线性可分情况,提出了带有动态惩罚因子的线性支持张量模型(DC-LSTM),该模型不能忽略训练样本较少的一类稀有支持向量对结构风险的影响。随后,针对非线性可分离情况,将张量核函数引入DC-LSTM,并提出了具有动态代价因子的非线性支持张量模型(DC-NSTM)。为了验证DC-STM在不平衡数据分类中的性能,将其应用于数据不平衡的旋转机械故障分类。实验结果表明,当旋转机械训练样本为不平衡数据时,该方法可以取得较好的分类效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号