首页> 外文期刊>Mathematical Problems in Engineering >Unsupervised Optimal Discriminant Vector Based Feature Selection Method
【24h】

Unsupervised Optimal Discriminant Vector Based Feature Selection Method

机译:基于无监督的最优判别向量的特征选择方法

获取原文
获取原文并翻译 | 示例

摘要

An efficient unsupervised feature selection method based on unsupervised optimal discriminant vector is developed to find the important features without using class labels. Features are ranked according to the feature importance measurement based on unsupervised optimal discriminant vector in the following steps. First, fuzzy Fisher criterion is adopted as objective function to derive the optimal discriminant vector in unsupervised pattern. Second, the feature importance measurement based on elements of unsupervised optimal discriminant vector is defined to determine the importance of each feature. The features with little importance measurement are removed from the feature subset. Experiments on UCI dataset and fault diagnosis are carried out to show that the proposed method is very efficient and able to deliver reliable results.
机译:提出了一种基于无监督最优判别向量的有效无监督特征选择方法,以在不使用类别标签的情况下找到重要特征。在以下步骤中,基于基于无监督的最优判别向量的特征重要性度量,对特征进行排名。首先,采用模糊费舍尔准则作为目标函数,以无监督模式导出最优判别向量。其次,定义基于无监督最优判别向量元素的特征重要性度量,以确定每个特征的重要性。从重要性子集中删除了重要性不高的特征。通过对UCI数据集和故障诊断的实验表明,该方法非常有效,并且能够提供可靠的结果。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第14期|396780.1-396780.7|共7页
  • 作者

    Su-Qun Cao; Jonathan H. Manton;

  • 作者单位

    Faculty of Mechanical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China,Department of Electrical and Electronic Engineering, University of Melbourne, Victoria, VIC 3010, Australia;

    Department of Electrical and Electronic Engineering, University of Melbourne, Victoria, VIC 3010, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号