首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >AN OPTIMAL FEATURE SUBSET SELECTION METHOD BASED ON DISTANCE DISCRIMINANT AND DISTRIBUTION OVERLAPPING
【24h】

AN OPTIMAL FEATURE SUBSET SELECTION METHOD BASED ON DISTANCE DISCRIMINANT AND DISTRIBUTION OVERLAPPING

机译:基于距离判别和分布重叠的最优特征子集选择方法

获取原文
获取原文并翻译 | 示例

摘要

The goal of feature selection is to search the optimal feature subset with respect to the evaluation function. Exhaustively searching all possible feature subsets requires high computational cost. The alternative suboptimal methods are more efficient and practical but they cannot promise globally optimal results. We propose a new feature selection algorithm based on distance discriminant and distribution overlapping (HFSDD) for continuous features, which overcomes the drawbacks of the exhaustive search approaches and those of the suboptimal methods. The proposed method is able to find the optimal feature subset without exhaustive search or Branch and Bound algorithm. The most difficult problem for optimal feature selection, the search problem, is converted into a feature ranking problem following rigorous theoretical proof such that the computational complexity can be greatly reduced. Since the distribution of overlapping degrees between every two classes can provide useful information for feature selection, HFSDD also takes them into account by using a new approach to estimate the overlapping degrees. In this sense, HFSDD is a distance discriminant and distribution overlapping based solution. HFSDD was compared with ReliefF and mrmrMID on ten data sets. The experimental results show that HFSDD outperforms the other methods.
机译:特征选择的目的是针对评估函数搜索最佳特征子集。穷举搜索所有可能的特征子集需要很高的计算成本。替代性的次优方法更有效,更实用,但是它们不能保证获得全局最佳结果。我们提出了一种基于距离判别和分布重叠(HFSDD)的连续特征选择算法,该算法克服了穷举搜索方法和次优搜索方法的缺陷。提出的方法无需穷举搜索或分支定界算法就能找到最优特征子集。最佳的特征选择最困难的问题,即搜索问题,经过严格的理论证明,被转换为特征等级问题,从而可以大大降低计算复杂度。由于每两个类别之间的重叠度分布可以为特征选择提供有用的信息,因此HFSDD还通过使用一种新的方法来估计重叠度来将它们考虑在内。从这个意义上讲,HFSDD是一种基于距离判别和分布重叠的解决方案。在十个数据集上将HFSDD与ReliefF和mrmrMID进行了比较。实验结果表明,HFSDD优于其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号