首页> 外文OA文献 >Unsupervised Optimal Discriminant Vector Based Feature Selection Method
【2h】

Unsupervised Optimal Discriminant Vector Based Feature Selection Method

机译:无监督的最佳判别向量基于传感器的特征选择方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An efficient unsupervised feature selection method based on unsupervised optimal discriminant vector is developed to find the important features without using class labels. Features are ranked according to the feature importance measurement based on unsupervised optimal discriminant vector in the following steps. First, fuzzy Fisher criterion is adopted as objective function to derive the optimal discriminant vector in unsupervised pattern. Second, the feature importance measurement based on elements of unsupervised optimal discriminant vector is defined to determine the importance of each feature. The features with little importance measurement are removed from the feature subset. Experiments on UCI dataset and fault diagnosis are carried out to show that the proposed method is very efficient and able to deliver reliable results.
机译:基于无监督的最佳判别向量的高效无监督特征选择方法是开发出的,以找到重要的功能而不使用类标签。根据以下步骤中基于无监督的最佳判别向量的特征重要性测量来排序特征。首先,采用模糊的Fisher标准作为目标函数来导出无监督模式的最佳判别载体。其次,基于无监督的最佳判别向量的元素的特征重要性测量被定义为确定每个特征的重要性。从特征子集中移除了具有很小的重要性的特征。进行了UCI数据集和故障诊断的实验,以表明所提出的方法非常有效,能够提供可靠的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号