首页> 外文期刊>Mathematical Problems in Engineering >Dynamic and Stability of Harmonic Driving Flexible Cartesian Robotic Arm with Bolted Joints Based on the Sensitivity and Multiple Scales Method
【24h】

Dynamic and Stability of Harmonic Driving Flexible Cartesian Robotic Arm with Bolted Joints Based on the Sensitivity and Multiple Scales Method

机译:基于灵敏度和多尺度方法的螺栓连接柔性直角笛卡尔机器人手臂的动力和稳定性

获取原文
获取原文并翻译 | 示例

摘要

Flexible Cartesian robotic arms (CRAs) are typical multicoupling systems. Considering the elastic effects of bolted joints and the motion disturbances, this paper investigates the dynamic and stability of the flexible CRA. With the kinetic energy and potential energy of the comprising components, Hamilton's variational principle and Duhamel integral are utilized to derive the dynamic equation and vibration differential equation. Based on the proposed elastic restraint model of the bolted joints, boundary conditions and mode equations of the flexible CRA are determined with using the principle of virtual work. According to the mode frequencies and sensitivities analysis, it reveals that the connecting stiffness of the bolted joints has significant influences, and the mode frequencies are more sensitive to the tensional stiffness. Moreover, describing the motion displacement of the driving base as combination of an average motion displacement and a harmonic disturbance, the vibration responses of the system are studied. The result indicates that the motion disturbance has obvious influence on the vibration responses, and the influence enhances under larger accelerating operations. The multiple scales method is introduced to analyze the parametric stability of the system, as well as the influences of the tensional stiffness and the end-effector on the stability.
机译:灵活的笛卡尔机器人手臂(CRA)是典型的多耦合系统。考虑到螺栓连接的弹性效应和运动干扰,本文研究了柔性CRA的动态和稳定性。利用组成成分的动能和势能,利用汉密尔顿的变分原理和Duhamel积分,推导了动力学方程和振动微分方程。在提出的螺栓连接弹性约束模型的基础上,运用虚功原理确定了柔性CRA的边界条件和模态方程。通过对模态频率和灵敏度的分析,可以发现螺栓连接的连接刚度具有显着影响,而模态频率对拉伸刚度更敏感。此外,将驱动基座的运动位移描述为平均运动位移和谐波干扰的组合,研究了系统的振动响应。结果表明,运动扰动对振动响应有明显的影响,并且在较大的加速操作下影响会增强。引入多尺度方法来分析系统的参数稳定性,以及拉伸刚度和末端执行器对稳定性的影响。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第24期|795101.1-795101.12|共12页
  • 作者单位

    China Univ Min & Technol, Sch Mechatron Engn, Xuzhou 221116, Peoples R China;

    China Univ Min & Technol, Sch Mechatron Engn, Xuzhou 221116, Peoples R China;

    China Univ Min & Technol, Sch Mechatron Engn, Xuzhou 221116, Peoples R China;

    China Univ Min & Technol, Sch Mechatron Engn, Xuzhou 221116, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号