首页> 外文期刊>Mathematical Problems in Engineering >Optimization of Indoor Thermal Comfort Parameters with the Adaptive Network-Based Fuzzy Inference System and Particle Swarm Optimization Algorithm
【24h】

Optimization of Indoor Thermal Comfort Parameters with the Adaptive Network-Based Fuzzy Inference System and Particle Swarm Optimization Algorithm

机译:基于自适应网络模糊推理系统和粒子群算法的室内热舒适性参数优化

获取原文
获取原文并翻译 | 示例

摘要

The goal of this study is to improve thermal comfort and indoor air quality with the adaptive network-based fuzzy inference system (ANFIS) model and improved particle swarm optimization (PSO) algorithm. A method to optimize air conditioning parameters and installation distance is proposed. The methodology is demonstrated through a prototype case, which corresponds to a typical laboratory in colleges and universities. A laboratory model is established, and simulated flow field information is obtained with the CFD software. Subsequently, the ANFIS model is employed instead of the CFD model to predict indoor flow parameters, and the CFD database is utilized to train ANN input-output "metamodels"for the subsequent optimization. With the improved PSO algorithmand the stratified sequencemethod, the objective functions are optimized. The functions comprise PMV, PPD, and mean age of air. The optimal installation distance is determined with the hemisphere model. Results show that most of the staff obtain a satisfactory degree of thermal comfort and that the proposed method can significantly reduce the cost of building an experimental device. The proposed methodology can be used to determine appropriate air supply parameters and air conditioner installation position for a pleasant and healthy indoor environment.
机译:这项研究的目的是通过基于自适应网络的模糊推理系统(ANFIS)模型和改进的粒子群优化(PSO)算法来改善热舒适性和室内空气质量。提出了一种优化空调参数和安装距离的方法。通过原型案例演示了该方法,该案例对应于大学中的典型实验室。建立实验室模型,并使用CFD软件获得模拟流场信息。随后,使用ANFIS模型代替CFD模型来预测室内流量参数,并利用CFD数据库训练ANN输入输出“元模型”以进行后续优化。利用改进的PSO算法和分层序列方法,优化了目标函数。这些功能包括PMV,PPD和平均空气年龄。最佳安装距离由半球模型确定。结果表明,大多数员工都能获得令人满意的热舒适度,并且所提出的方法可以显着降低建造实验设备的成本。所提出的方法可用于确定适当的空气供应参数和空调安装位置,以营造愉快而健康的室内环境。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第2017期|3075432.1-3075432.13|共13页
  • 作者单位

    Univ Sci & Technol Beijing, Sch Energy & Environm Engn, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Sch Energy & Environm Engn, Beijing 100083, Peoples R China|Univ Sci & Technol Beijing, Beijing Key Lab Energy Saving & Emiss Reduct Met, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Sch Mech Engn, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Sch Energy & Environm Engn, Beijing 100083, Peoples R China|Univ Sci & Technol Beijing, Beijing Key Lab Energy Saving & Emiss Reduct Met, Beijing 100083, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号