首页> 外文期刊>Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems >Investigation of convective heat transfer of ferrofluid using CFD simulation and adaptive neuro-fuzzy inference system optimized with particle swarm optimization algorithm
【24h】

Investigation of convective heat transfer of ferrofluid using CFD simulation and adaptive neuro-fuzzy inference system optimized with particle swarm optimization algorithm

机译:用CFD仿真和自适应神经模糊推理系统对纤维素流体对流传热的研究及粒子群优化算法优化

获取原文
获取原文并翻译 | 示例

摘要

Ferrofluid is defined as a magnetic fluid which is composed of magnetic nanoparticles immersed in the base fluid such as water and oil. Nanofluids under magnetic field were proposed as a novel working fluid for industrial applications. In this study, the convective heat transfer of Fe3O4/water ferrofluid under constant magnetic field is evaluated. For this purpose, computational fluid dynamics (CFD) simulation and adaptive neuro-fuzzy inference system optimized with particle swarm optimization (ANFIS-PSO) are applied. To develop the ANFIS-PSO model, inlet temperature of ferrofluid, volume fraction of nanoparticle (Fe3O4), Reynolds number and intensity of magnetic field are considered as input variables of the model and heat transfer coefficient (HTC) of Fe3O4/water ferrofluid is considered to be the target. The results demonstrated that the developed ANFIS-PSO model can successfully predict the HTC of ferrofluid in laminar and turbulent flows in terms of the correlation coefficient (R), root mean square error (RMSE) and mean absolute percentage error (MAPE) respectively with 0.9992, 117.19 (W/m(2)K) and 2.44% for testing phase of the network. Also, CFD simulation and ANFIS-PSO model illustrated that the amount of the HTC of ferrofluid increases by increasing in intensity of magnetic field and inlet temperature of ferrofluid. (C) 2017 Elsevier B.V. All rights reserved.
机译:Ferrofluid定义为磁性流体,其由浸入诸如水和油的基础流体中的磁性纳米颗粒构成。提出磁场下的纳米流体作为工业应用的新型工作流体。在该研究中,评估了Fe3O4 /水铁物流体的对流传热。为此目的,应用了用粒子群优化(ANFIS-PSO)优化的计算流体动力学(CFD)仿真和自适应神经模糊推理系统。开发ANFIS-PSO模型,纳米粒子(Fe3O4)的入口温度,纳米粒子(Fe3O4)的体积分数,磁场的雷诺数和强度被认为是Fe3O4 /水Ferrofluid的模型和传热系数(HTC)的输入变量成为目标。结果表明,发达的ANFIS-PSO模型可以在相关系数(R)方面成功地预测层流和湍流流动中的铁磁流体HTC,根均线误差(RMSE)和平均绝对百分比误差(MAPE)分别与0.9992 ,117.19(w / m(2)k)和网络测试阶段的2.44%。此外,CFD仿真和ANFIS-PSO模型示出了铁磁流体HTC的量通过增加磁场强度和铁磁流体的入口温度增加。 (c)2017 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号