首页> 外文期刊>Mathematical Problems in Engineering >On the Use of Interval Extensions to Estimate the Largest Lyapunov Exponent from Chaotic Data
【24h】

On the Use of Interval Extensions to Estimate the Largest Lyapunov Exponent from Chaotic Data

机译:关于使用区间扩展从混沌数据估计最大Lyapunov指数

获取原文
获取原文并翻译 | 示例

摘要

A method to estimate the (positive) largest Lyapunov exponent (LLE) from data using interval extensions is proposed. The method differs from the ones available in the literature in its simplicity since it is only based on three rather simple steps. Firstly, a polynomial NARMAX is used to identify a model from the data under investigation. Secondly, interval extensions, which can be easily extracted from the identified model, are used to calculate the lower bound error. Finally, a simple linear fit to the logarithm of lower bound error is obtained and then the LLE is retrieved from it as the third step. To illustrate the proposed method, the LLE is calculated for the following well-known benchmarks: sine map, Rossler Equations, and Mackey-Glass Equations from identified models given in the literature and also from two identified NARMAX models: a chaotic jerk circuit and the tent map. In the latter, a Gaussian noise has been added to show the robustness of the proposed method.
机译:提出了一种使用区间扩展从数据估计(正)最大李雅普诺夫指数(LLE)的方法。由于该方法仅基于三个相当简单的步骤,因此它与文献中的方法有所不同。首先,使用多项式NARMAX从调查数据中识别模型。其次,可以从识别出的模型中轻松提取的间隔扩展用于计算下限误差。最后,获得与下限误差的对数的简单线性拟合,然后从中检索LLE作为第三步。为了说明所提出的方法,LLE是根据以下知名基准计算得出的:正弦图,Rossler方程和Mackey-Glass方程是根据文献中提供的已识别模型以及两个已识别的NARMAX模型进行的:一个混沌的急动回路和一个帐篷地图。在后者中,增加了高斯噪声以显示所提出方法的鲁棒性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第3期|6909151.1-6909151.8|共8页
  • 作者单位

    Univ Fed Sao Joao del Rei, Dept Elect Engn, Control & Modelling Grp GCOM, BR-36307352 Sao Joao Del Rei, MG, Brazil;

    Univ Fed Sao Joao del Rei, Dept Elect Engn, Control & Modelling Grp GCOM, BR-36307352 Sao Joao Del Rei, MG, Brazil;

    Univ Fed Sao Joao del Rei, Dept Elect Engn, Control & Modelling Grp GCOM, BR-36307352 Sao Joao Del Rei, MG, Brazil;

    Univ Fed Minas Gerais, Sch Engn, Dept Elect Engn, BR-31270901 Belo Horizonte, MG, Brazil;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号