首页> 外文期刊>Mathematical Problems in Engineering >Multiobjective Trajectory Optimization and Adaptive Backstepping Control for Rubber Unstacking Robot Based on RFWNN Method
【24h】

Multiobjective Trajectory Optimization and Adaptive Backstepping Control for Rubber Unstacking Robot Based on RFWNN Method

机译:基于RFWNN的卸胶机器人多目标轨迹优化与自适应反推控制。

获取原文
获取原文并翻译 | 示例

摘要

Multiobjective trajectory optimization and adaptive backstepping controlmethod based on recursive fuzzy wavelet neural network (RFWNN) are proposed to solve the problem of dynamic modeling uncertainties and strong external disturbance of the rubber unstacking robot during recycling process. First, according to the rubber viscoelastic properties, the Hunt-Crossley nonlinearmodel is used to construct the robot dynamics model. Then, combined with the dynamic model and the recycling process characteristics, the multiobjective trajectory optimization of the rubber unstacking robot is carried out for the operational efficiency, the running trajectory smoothness, and the energy consumption. Based on the trajectory optimization results, the adaptive backstepping control method based on RFWNN is adopted. The RFWNN method is applied in the main controller to cope with time-varying uncertainties of the robot dynamic system. Simultaneously, an adaptive robust control law is developed to eliminate inevitable approximation errors and unknown disturbances and relax the requirement for prior knowledge of the controlled system. Finally, the validity of the proposed control strategy is verified by experiment.
机译:提出了基于递归模糊小波神经网络(RFWNN)的多目标轨迹优化和自适应反推控制方法,以解决橡胶拆垛机器人在回收过程中动力学建模不确定性强和外部干扰大的问题。首先,根据橡胶的粘弹特性,使用Hunt-Crossley非线性模型构建机器人动力学模型。然后,结合动力学模型和回收过程的特点,针对卸胶机器人的运行效率,运行轨迹的平稳性和能耗进行了多目标轨迹优化。基于轨迹优化结果,采用基于RFWNN的自适应反推控制方法。 RFWNN方法应用于主控制器中,以应对机器人动态系统随时间变化的不确定性。同时,开发了一种自适应鲁棒控制律,以消除不可避免的逼近误差和未知干扰,并放宽了对受控系统先验知识的要求。最后,通过实验验证了所提出控制策略的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号