首页> 外文期刊>Mathematical Problems in Engineering >Key-Skeleton-Pattern Mining on 3D Skeletons Represented by Lie Group for Action Recognition
【24h】

Key-Skeleton-Pattern Mining on 3D Skeletons Represented by Lie Group for Action Recognition

机译:由李群代表的3D骨架的关键骨架模式挖掘用于动作识别

获取原文
获取原文并翻译 | 示例

摘要

The human skeleton can be considered as a tree system of rigid bodies connected by bone joints. In recent researches, substantial progress has been made in both theories and experiments on skeleton-based action recognition. However, it is challenging to accurately represent the skeleton and precisely eliminate noisy skeletons from the action sequence. This paper proposes a novel skeletal representation, which is composed of two subfeatures to recognize human action: static features and dynamic features. First, to avoid scale variations from subject to subject, the orientations of the rigid bodies in a skeleton are employed to capture the scale-invariant spatial information of the skeleton. The static feature of the skeleton is defined as a combination of the orientations. Unlike previous orientation-based representations, the orientation of a rigid body in the skeleton is defined as the rotations between the rigid body and the coordinate axes in three-dimensional space. Each rotation is mapped to the special orthogonal group SO(3). Next, the rigid-body motions between the skeleton and its previous skeletons are utilized to capture the temporal information of the skeleton. The dynamic feature of the skeleton is defined as a combination of the motions. Similarly, the motions are represented as points in the special Euclidean group SE(3). Therefore, the proposed skeleton representation lies in the Lie group (SE(3)xxSE(3), SO(3)xxSO(3)), which is a manifold. Using the proposed representation, an action can be considered as a series of points in this Lie group. Then, to recognize human action more accurately, a new pattern-growth algorithm named MinP-PrefixSpan is proposed to mine the key-skeleton-patterns from the training dataset. Because the algorithm reduces the number of new patterns in each growth step, it is more efficient than the PrefixSpan algorithm. Finally, the key-skeleton-patterns are used to discover the most informative skeleton sequences of each action (skeleton sequence). Our approach achieves accuracies of 94.70%, 98.87%, and 95.01% on three action datasets, outperforming other relative action recognition approaches, including LieNet, Lie group, Grassmann manifold, and Graph-based model.
机译:人体骨骼可视为通过骨骼关节连接的刚体的树状系统。在最近的研究中,基于骨骼的动作识别的理论和实验都取得了实质性进展。但是,准确地表示骨骼并从动作序列中准确消除嘈杂的骨骼是一项挑战。本文提出了一种新颖的骨架表示,该骨架表示由识别人类动作的两个子功能组成:静态功能和动态功能。首先,为了避免对象之间的比例变化,采用骨骼中刚体的方向来捕获骨骼的尺度不变空间信息。骨架的静态特征定义为方向的组合。与以前的基于方向的表示法不同,将刚体在骨架中的方向定义为刚体与三维空间中坐标轴之间的旋转。每个旋转都映射到特殊正交组SO(3)。接下来,利用骨骼及其先前骨骼之间的刚体运动来捕获骨骼的时间信息。骨骼的动态特征被定义为运动的组合。类似地,将运动表示为特殊欧几里得组SE(3)中的点。因此,建议的骨架表示形式属于Lie组(SE(3)xxSE(3),SO(3)xxSO(3)),这是一个流形。使用建议的表示形式,可以将一个动作视为该Lie组中的一系列要点。然后,为了更准确地识别人的动作,提出了一种新的模式增长算法MinP-PrefixSpan,以从训练数据集中挖掘关键骨架模式。由于该算法减少了每个生长步骤中新模式的数量,因此它比PrefixSpan算法更有效。最后,关键骨架模式用于发现每个动作的最有用的骨架序列(骨架序列)。我们的方法在三个动作数据集上实现了94.70%,98.87%和95.01%的精度,优于其他相对动作识别方法,包括LieNet,Lie组,Grassmann流形和基于图的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号